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Abstract

We build an arbitrage-based model of the yield curves in a heterogeneous

monetary union with sovereign default risk, which can account for the asymmetric

shifts in euro area yields during the Covid-19 pandemic. We derive an a�ne term

structure solution, and decompose yields into an expectations component, a term

premium, an expected default loss, and a credit risk premium. In an extension,

we endogenize the peripheral default probability, showing that it decreases with

central bank bond-holdings. Calibrating the model to Germany and Italy, we show

that both the level and the shifts in the sovereign spread are mainly attributable

to the credit risk premium.
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1 Introduction

Following the Great Financial Crisis of 2008-09, as policy rates in advanced economies

approached their e�ective lower bounds, central banks relied on unconventional tools,

such as large-scale asset purchases, to �atten the yield curve and thus provide further

policy stimulus. In this context, models of the term structure have become important

analytical tools for central bankers and for scholars of monetary policy. In particular,

they underlie the prevailing view of the e�ects of asset purchase programmes, which

revolves around the duration risk extraction channel (e.g. Greenwood and Vayanos,

2014; Hamilton and Wu, 2012; or Krishnamurthy, 2022). Under this mechanism, net

purchases of long-maturity bonds �atten the yield curve by reducing the term premium

that private markets demand to compensate for duration risk, while the short end of

the curve is anchored by the risk-free short rate.

However, the movements of euro area yield curves (see Figure 1) following the pan-

demic outbreak of early 2020 and the ECB's subsequent monetary policy response seem

inconsistent with this mechanism. While duration extraction might explain the �at-

tening of the German yield curve after the pandemic emergency purchase programme

(PEPP) announcement on March 18, 2020, it o�ers no explanation of the much larger

movements in the Italian and Spanish yield curves. A key feature of these movements

is the large shift in the short end of the peripheral curves, which cannot be explained

by term premium considerations. The same is true for the large upward shift in pe-

ripheral yield curves as the pandemic shock unfolded (before PEPP was announced),

which cannot be explained by invoking the pandemic's impact on the expected amount

of duration risk to be absorbed by the market.

It is not hard to see why the mainstream view of term structure dynamics fails to

explain yields in southern Europe, when we consider that today's workhorse models,

such as the in�uential Vayanos and Vila (2021) framework, abstract from sovereign

default risk. While this may be a reasonable abstraction when analyzing the safest

issuers, such as the US Treasury, it is less suitable for the euro area, where sovereign

issuers that are viewed as safe coexist � and share a common monetary policy � with

others that face high and volatile sovereign spreads. Motivated by these observations,

this paper extends the Vayanos and Vila (2021) term structure model to a multi-country

setting with sovereign default risk. Concretely, we consider a monetary union with two

member states: Core, which issues default-free bonds, and Periphery, which is subject
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Figure 1: E�ects of the pandemic and the PEPP announcement on German, Spanish,
and Italian yields
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Notes. Data source: Datastream.

Left panel . Shifts in German, Spanish, and Italian zero-coupon yields (annual percentage points)

from the weekly average of 13-19 Feb. 2020 (dashes), to that of 12-18 Mar. 2020 (solid).

Right panel . Shifts in German, Spanish, and Italian zero-coupon yields (annual percentage points)

from 18 March 2020 (dashes, before PEPP announcement) to 20 March 2020 (solid, after).

to default risk. The model is populated by risk-averse arbitrageurs, who trade bonds

across both countries and all maturities, and preferred-habitat investors, who demand

bonds of a speci�c maturity from a speci�c jurisdiction. Bond yields in the model are

driven by one or more stochastic factors, including the short-term riskless rate. Yields

also depend on the net supply of bonds of each maturity and jurisdiction, that is, bond

supply from the governments minus the bonds held by the common monetary authority.

The model permits an analytical decomposition of yields (see Prop. 1) into four

components: (i) an expectations term that represents the expected future path of the

risk-free rate; (ii) a term premium representing the risk-averse compensation for bearing

duration risk; (iii) an expected default loss, which captures the compensation that a

risk-neutral investor would require for holding defaultable bonds; and (iv) a credit risk

premium that represents the risk-averse compensation for absorbing default risk (over

and above expected default losses).1 Thus, our framework complements the duration

1The expected default loss is the compensation for default under the physical measure; the sum
of the expected default loss and the credit risk premium is the compensation for default under the
equivalent martingale measure.
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extraction channel with a default risk extraction channel that operates through the

credit risk premium rather than the term premium: risk-averse investors demand less

compensation to hold a defaultable bond when there is less default risk outstanding

in the market. Changes in default risk can then shift the front end of the yield curve

without a�ecting short-term riskless rates (Prop. 3).

We consider two ways of modelling default. First, in Sec. 2, we impose an exogenous

but time-varying default probability, which permits a simple exposition of key analytical

results that are independent of how one models sovereign default. But in Sec. 3 we

develop a more realistic setup in which the default probability varies with events that

shift net bond supply, such as the pandemic outbreak and the PEPP announcement.

To this end, we assume that the peripheral bond market is subject to rollover crises in

the spirit of Calvo (1988) and Cole and Kehoe (2000). When a rollover crisis arrives,

the peripheral �scal authority decides whether to continue servicing its debts or else

to partially default by applying a haircut to bonds of all maturities. We show that,

under certain conditions, central bank bond purchases ease the �scal pressure that the

peripheral government will face if a rollover crisis arrives, and thus reduce its incentives

to default.2 Importantly, our key analytical �ndings � including the yield decomposition

� apply to both model versions. However, endogenizing default reinforces the impact

of asset purchases on yields, both because purchases decrease the expected default loss

and because the default risk extraction channel is stronger when asset purchases both

reduce the net supply of defaultable bonds and reduce the default risk on each bond.

We calibrate a quantitative version of our endogenous default model to Germany and

Italy.3 We use ECB, Eurosystem, and Banco de España projections of bond supply and

Eurosystem purchases, together with estimates of preferred-habitat demand from earlier

studies, to calculate the amount of sovereign bonds to be absorbed by arbitrageurs.4

We �t the model to data on yields from the euro period (1999-2022), and also from

2This is because redemptions of bonds held by the central bank (and interest payments on those
bonds) are payments from the treasury to the central bank which may be rebated back to the treasury
through central bank dividends. Therefore, by expanding the monetary base to purchase sovereign
bonds, the central bank reduces the �scal pressure that the peripheral government will face if a rollover
crisis arrives, and thus reduces its incentives to default, a point made by Corsetti and Dedola (2016).
This implicitly supposes that national central banks conduct asset purchases on behalf of the union-
wide central bank, which is typically the case in the Eurosystem.

3For the empirical analysis in Secs. 4-5, we extend the one-factor model of Sec. 2, which features
short-rate shocks only, to a multi-factor framework with preferred-habitat demand shocks.

4Our calibration of preferred-habitat demand uses information from Eser et al. (2023).
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the two-day window around the ECB's initial PEPP announcement on March 18, 2020,

when an aggregate purchase envelope of 750 billion euros was declared. Parameter

identi�cation is closely guided by our decomposition of yields. Assuming that German

sovereign default risk is negligible, arbitrageurs' risk aversion can be inferred by �tting

the German term premium.5 The expectations components and term premia are tightly

linked across the two countries (Prop. 2), so the spread between Italian and German

yields represents (approximately) the total compensation for Italian default risk, i.e. the

expected default loss plus the credit risk premium. Both components increase with the

default probability, while the second one also increases with arbitrageurs' risk aversion.

Thus, given the level of risk aversion consistent with long-run German term premia,

�tting the sovereign spread identi�es the long-run probability of default. We then have

enough information to quantify both components of the Italy-Germany spread.

Our main quantitative �nding is that both the mean level and the �uctuations

of the sovereign spread are mainly attributable to the credit risk premium. In our

model, the relative sizes of the credit risk premium and the expected default loss hinge

critically on (i) arbitrageurs' risk aversion and (ii) the amount of defaultable bonds

they must absorb. When we back out the degree of risk aversion that explains German

term premia (e.g., 146 bp on ten-year bonds) and apply it to the quantity of Italian

bonds arbitrageurs must absorb, we �nd that the credit risk premium is on average

around three times as large as the expected default loss, accounting for roughly 3/4

of the sovereign spread. Similarly, default risk extraction is the main channel driving

the reaction of Italian yields to the PEPP announcement.6 The downward shift in the

Italy-Germany spread, across all maturities, is mostly explained by a lower credit risk

premium, caused both by a small decline in the Italian default probability and by a

reduction in the quantity of defaultable assets that the market would have to hold from

then on. In contrast, the decrease in the expected default loss, by itself, causes only

a small change in the sovereign spread. Likewise, the reduction in the term premium

had a fairly small e�ect on yields. The relative strength of the default risk channel,

5The German term premium also depends on the volatility of preferred habitat demand. We
discipline the preferred habitat process by �tting the standard deviation of German yields together
with the German term premium.

6These results are in line with the empirical study of Corradin and Schwaab (2023) for the same
episode, which concludes that a reduction in default risk was the dominant channel through which
the PEPP announcement a�ected Italian yields; likewise they are consistent with �ndings of Krishna-
murthy et al. (2018) and Demir et al. (2021) regarding earlier asset purchase programs in Europe.
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compared with the duration risk channel, explains the asymmetry of the responses of

German and Italian yields. These results are robust across a wide range of alternative

parameterizations. Credit risk premia always dominate expected default losses unless

risk aversion or default haircuts take implausibly low values that are inconsistent with

the observed level, slope, and responsiveness of yields.

We provide additional support for the model by discussing its �t to untargeted

moments, including long-run Sharpe ratios and the impact of the pandemic outbreak.

We show that a large credit risk premium on Italian bonds is consistent with a moderate

Sharpe ratio on Italian default risk. We also inspect the mechanisms by which shocks to

future net bond supply can immediately shift both long and short yields. The forward-

looking nature of the default decision is crucial for shifting the sovereign spread on

impact. The impact of projected asset purchases on future central bank remittances

is particularly important for the fall in the yields on the shortest peripheral bonds in

response to the PEPP announcement.

Our sharp analytical results, and hence our identi�cation strategy, rely on the fact

that our model, like that of Vayanos and Vila (2021), admits an explicit solution of

a�ne form. To obtain this solution, we must assume that the probability of default

is a deterministic function of time; otherwise, numerical solution methods would be

required. In the endogenous default speci�cation, this requires that the governments'

bond supply and the central bank's bond demand are deterministic sequences.7 This

crucial simplifying assumption comes at a cost: in a steady state with a constant default

rate, the sovereign spread is independent of maturity (Prop. 3). This contrasts with

data on peripheral euro area yields, which show that the sovereign spread typically

increases with maturity. Extending this framework to allow for a stochastically time-

varying default rate is an important task that we leave for future research.

Related literature. This paper links two di�erent strands of literature. First, we

contribute to the �nance literature on term structure models. In liquid markets, arbi-

trage links bond returns tightly across maturities and issuers. Du�e and Kan (1996)

and Ang and Piazzesi (2003) developed an analytical solution for the yield curve consis-

tent with arbitrage, when all yields are a�ne functions of a set of autoregressive Gaus-

sian factors. Vayanos and Vila (2021) derived an a�ne term structure model (ATSM) of

this type from a microfounded setting featuring arbitrageurs with mean-variance utility

7This may be interpreted as a scenario in which the public sector commits to a particular time path
for the net supply of bonds in the market.
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functions and �preferred-habitat� investors whose net demand for bonds of speci�c ma-

turities is linear in those bonds' yields. This market structure makes it possible to model

complex bond market interactions and policy interventions. For example, Greenwood

and Vayanos (2014) showed empirically that the price of risk increases with arbitrageurs'

maturity-weighted positions; therefore quantitative easing can reduce yields, even if the

face value of debt outstanding is unchanged. Other applications include quantitative

easing at the e�ective lower bound (Hamilton and Wu, 2012; King, 2019), corporate

bond purchases (Gilchrist et al., 2024), repo market dynamics (He et al., 2023, Jappelli

et al., 2023), and exchange rates (Greenwood et al., 2023; Gourinchas et al., 2022).8

The ATSM structure has also been embedded into a New Keynesian model to analyze

its monetary policy implications (Ray 2019). Motivated by the this literature, various

papers have incorporated net supply factors into otherwise standard ATSMs, including

Li and Wei (2013) and Eser et al. (2023); the latter paper uses security-level data on

sectoral bond holdings to measure the duration risk held by arbitrageurs and to analyze

the impact of the ECB's Asset Purchase Program (APP).

While they have been widely applied, much of the literature on ATSMs has stud-

ied US markets, under the assumption that Treasury securities are nominally riskless.

Applications to �xed exchange rate environments � including monetary unions � or to

commercial debt make it necessary to consider default risk. Hamilton and Wu (2012)

construct an ATSM that includes one-period defaultable non-Treasury debt. A key

insight about defaultable bond prices comes from Du�e and Singleton (1999), who

show that if the loss caused by default is a �xed fraction of the bond's value, then the

pricing formulas for default-free and defaultable bonds are formally identical, with an

adjustment to the discount factor to account for expected losses due to default. Borgy

et al. (2012) price defaultable euro-area debt under the assumption that the Du�e and

Singleton (1999) condition holds. Altavilla et al. (2021) modelled euro area debt under

the assumption that default risk can be priced like any other Gaussian factor.

We contribute to this literature in several ways. We show how the non-Gaussian risk

of default � speci�cally, partial default on multi-period debt � can be incorporated into a

microfounded ATSM in the Vayanos-Vila tradition. Crucially, we show that default risk

opens up a novel default risk extraction channel of large-scale asset purchases, which

enables the model to generate large, parallel yield curve shifts like those in Fig. 1. In

8See Greenwood et al. (2024) for a survey of this literature.
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addition, we adapt the model to the context of a monetary union with heterogeneous

default risk. The multicountry structure both sharpens the identi�cation of model

parameters and makes our model suitable for analyzing euro area monetary and �scal

policy interactions.9 Finally, we model explicitly how central bank asset purchases

a�ect the default probability by incorporating the possibility of rollover crises, showing

how this reinforces the default risk extraction channel vis-à-vis the simpler case with

exogenous default probability. This setup extends aspects of the two-period economy

of Corsetti and Dedola (2016) to a fully dynamic environment.

This paper also relates to the literature on monetary-�scal interactions in the pres-

ence of sovereign risk.10 In contrast to previous related work, we study how central bank

asset purchases can reduce the probability of default, and how they a�ect the whole

term structure of interest rates. Linking the ATSM literature to that on sovereign risk is

fruitful, because it clari�es that duration extraction is neither the only nor the primary

channel by which asset purchases shift yields in the European context. Instead, default

risk extraction is the predominant channel of asset purchases in the euro area. The

quantitative discipline of the ATSM framework is crucial here, robustly showing that

the sovereign spread on peripheral bonds is mostly a risk premium. This conclusion is

consistent with evidence of De Grauwe and Ji (2013) showing that sovereign spreads

are less stable in the euro area than in other open economies with independent mone-

tary policies, and �ndings of Broeders et al. (2023) showing that ECB asset purchases

reduced the impact of bond market volatility on euro area sovereign spreads.

2 Bond market equilibrium with default risk

We begin by building a model of bond market equilibrium that incorporates an exoge-

nous but time-varying probability of partial default. This simple version of our model

shows how introducing default risk in a Vayanos-Vila framework that is entirely stan-

dard � apart from its two-country monetary union structure � modi�es the bond market

9As an application, in Online Appendix D, we quantify the increased e�ectiveness of the �exible
purchase design of the PEPP, compared with the rigid design of the ECB's earlier asset purchase
programme (APP).

10See Calvo (1988), Cole and Kehoe (2000), Aguiar et al. (2015), Reis (2013), Corsetti and Dedola
(2016), Camous and Cooper (2019), Bacchetta et al. (2018), Nuño et al. (2023), Na et al. (2018),
Arellano et al. (2020), or Bianchi and Mondragon (2022).
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equilibrium and shapes the transmission of central bank asset purchases, without taking

a stance on the modelling of sovereign default. Subsequently, we will extend the model

to include a monetary/�scal interactions block that endogenizes the default probability.

Time is continuous, with an in�nite horizon. We consider a monetary union com-

posed of two countries, Core and Periphery, with a single central bank. The key di�er-

ence between the two governments is that Core issues risk-free debt whereas Periphery

may default on its obligations. We denote Core variables with an asterisk, ′∗′. There

exists a continuum of zero-coupon government bonds of di�erent maturities. The time-

t price of a bond with maturity τ is Pt (τ) for Peripheral bonds and P ∗
t (τ) for Core

bonds. The yield is the spot rate for maturity τ :

yt (τ) = − logPt(τ)
τ

, y∗t (τ) = − logP ∗
t (τ)

τ
.

We assume that default follows a Poisson stochastic process, as in Du�e and Singleton

(1999). Let ψt be the arrival rate of sovereign default by the government of Periphery.

While it is easy to allow for default by both sovereigns, for clarity we focus on the

case where the probability of Core default is zero. Peripheral default, when it occurs,

consists of a restructuring in which the government reneges on fraction δ of each of its

outstanding bonds. Default thus a�ects all maturities of Peripheral debt equally.

There exists a short-term (instantaneous) riskless interest rate which is exogenous

and characterized by an Ornstein�Uhlenbeck process,

drt = κ (r̄ − rt) dt+ σdBt, (1)

where Bt is a Brownian motion and κ, r̄ and σ are constants. The short-term riskless

rate and the default shock itself are the only stochastic processes in this economy. The

Peripheral default arrival rate ψt is deterministic but may depend on time.11 Allowing

for time variation in the default rate allows us to model the impact of changes in �scal

conditions and changes in asset purchases on the default probability (see Sec. 3).

Net bond supply. The public sector of the monetary union determines the net

supply of bonds, consisting of the gross supply issued by the Peripheral and Core

governments minus the bonds held by the common central bank. Let ft(τ) be the stock

11The assumption that ψt is deterministic is essential in order to obtain an a�ne solution, as we will
see below.
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of Peripheral sovereign debt of maturity τ outstanding at time t, and let ιt(τ) represent

the rate of issuance of bonds of this type per unit of time. Then the law of motion of

the stock of Peripheral debt is

∂ft (τ)

∂t
= ιt (τ) +

∂ft (τ)

∂τ
, (2)

which implies that the quantity of bonds of residual maturity τ outstanding at time

t, ft (τ), equals the current gross issuance of bonds of that maturity, ιt (τ) dt, plus the

stock of bonds of maturity τ +dt that was outstanding at time t−dt. The dynamics of

the Core debt stock f ∗
t (τ), given issuances ι∗t (τ), are formally identical to (2). Likewise,

the central bank purchases ιCBt (τ) bonds of maturity τ from Periphery per unit of time,

resulting in a Peripheral portfolio fCBt (τ) that evolves as

∂fCBt (τ)

∂t
= ιCBt (τ) +

∂fCBt (τ)

∂τ
, (3)

with analogous dynamics for its portfolio of Core bonds. We denote the net supplies of

Periphery and Core bonds by

St (τ) ≡ ft (τ)− fCBt (τ) , S∗
t (τ) ≡ f ∗

t (τ)− fCB∗
t (τ) ,

respectively. For ease of exposition, but without loss of generality, we assume that net

bond supplies are deterministic but possibly time-varying functions.

Bond demand. We consider two classes of private agents that demand bonds.

Preferred-habitat investors demand bonds of a speci�c jurisdiction and speci�c matu-

rity, as an increasing function of the bonds' yield. Market participants with these char-

acteristics may include pension funds or insurance companies whose liability streams

require them to hold assets paying o� at speci�c times in the distant future, or money-

market mutual funds that must hold assets that provide liquidity at short horizons.

Arbitrageurs are willing to hold bonds of any maturity and jurisdiction, and may also

invest in the riskless short rate, but their positions are limited by their risk aversion.

These players represent liquid, well-informed market participants, such as hedge funds,

which nonetheless are unwilling to take arbitrarily large risks.

As in Vayanos and Vila (2021) we assume that preferred-habitat investors' demand
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for bonds of a given jurisdiction and maturity increases with the yield on those bonds:

Zt (τ) = h (τ)− α (τ)Et
[
logPt (τ) + τ δ̂dNt

]
= h (τ) + τα (τ)

[
yt (τ)− δ̂ψt

]
(4)

Z∗
t (τ) = h∗ (τ)− α∗ (τ) logP ∗

t (τ) = h∗ (τ) + τα∗ (τ) y∗t (τ)

where α (τ) , α∗ (τ) ≥ 0 and h (τ) , h∗ (τ) are exogenous functions and dNt is a Poisson

process capturing the arrival of the default event. Note that the demand for peripheral

bonds may depend on the probability of default. In particular, setting δ̂ = δ, the

demand for peripheral bonds depends on their yield net of the expected default loss

(ψtδ). If instead we set δ̂ = 0, then the demand for peripheral bonds, like that for core

bonds, simply depends on their yield.12

The main focus of our analysis is the arbitrageurs, who maximize a mean-variance

objective over instantaneous changes in wealth, as in Vayanos and Vila (2021),13

max
{Xt(τ),X∗

t (τ)}τ∈(0,∞)

Et (dWt)−
γ

2
Vart (dWt) (5)

subject to the law of motion of wealth:

dWt =

[
Wt −

� ∞

0

(Xt (τ) +X∗
t (τ)) dτ

]
rtdt

+

� ∞

0

(
Xt (τ)

(
dPt (τ)

Pt (τ)
− δdNt

)
+X∗

t (τ)
dP ∗

t (τ)

P ∗
t (τ)

)
dτ, (6)

where γ > 0 is the representative arbitrageur's risk-aversion coe�cient, and Xt (τ)

and X∗
t (τ) are the nominal quantities of bonds of di�erent maturities held in the ar-

bitrageur's portfolio. The �rst term in (6) shows the income from investing in the

short-term riskless rate, while the second term shows the capital gains from holding a

portfolio of Peripheral bonds Xt(τ) and Core bonds X∗
t (τ), adjusted for the possible

arrival of the default event. Note that arbitrageurs can operate in both markets (Core

12Later, in Sec. 4, we enhance the quantitative realism of the model by allowing for stochastic shifts
in the preferred habitat demand equation (4), as in Vayanos and Vila (2021).

13Some papers have considered portfolio problems in mean-variance settings where asset returns
are generated by jump processes, including Rachev and Han (2000), Ortobelli et al. (2003), Kallsen
(2000), and Emmer and Kluppelberg (2004), among others. In the quantitative evaluation of the model
presented in Sec. 4, we have veri�ed that the variance of wealth due to di�usion (interest rate) risk is
of the same order of magnitude as that associated to Poisson (default) risk.
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and Periphery), similar to Gourinchas et al. (2022).

Bond market clearing. Bond market clearing requires consistency between supply

and demand for bonds of each maturity and jurisdiction:

St (τ) = Zt (τ) +Xt (τ) , S∗
t (τ) = Z∗

t (τ) +X∗
t (τ) . (7)

That is, net supply by the public sector equals demand by preferred-habitat investors

plus that of arbitrageurs.

Bond pricing. We assume that after default, the Peripheral government issues new

bonds to replace the defaulted bonds, thus returning to its initial deterministic path of

gross bond supply.14 Thus, default leaves the state of the bond market unchanged, so

we seek to construct an equilibrium in which bond prices do not depend on previous

default events.15 We conjecture that there exist two pairs of deterministic sequences

of functions (At (τ) , Ct (τ)) and (A∗
t (τ) , C

∗
t (τ)) such that the price of bonds can be

expressed in log-a�ne form:

Pt (τ) = e−[At(τ)rt+Ct(τ)], P ∗
t (τ) = e−[A∗

t (τ)rt+C
∗
t (τ)]. (8)

Applying Itô's lemma to construct the expectation and variance terms in (5), the arbi-

trageurs' problem can be written as follows:

max
{Xt(τ),X∗

t (τ)}τ∈(0,∞)

�∞
0

(Xt (τ) (µt (τ)− rt) +X∗
t (τ) (µ

∗
t (τ)− rt)) dτ

− γσ2

2

[�∞
0

(Xt (τ)At(τ) +X∗
t (τ)A

∗
t (τ)) dτ

]2
− ψtδ

[�∞
0
Xt (τ) dτ

]
− γψt

2
δ2
[�∞

0
Xt (τ) dτ

]2
, (9)

14Perhaps surprisingly, it would be unrealistic to suppose that debt decreases when default occurs.
On the contrary, Arellano et al. (2023) show that debt is more likely to increase following a restruc-
turing. As in their paper, the model of monetary/�scal interactions that we develop in Sec. 3 implies
that default serves to alleviate short-term �scal pressure, not to reduce the debt load permanently.

15Du�e and Singleton (1999) show that default risk is easier to price if default causes the bondholder
to lose a �xed proportion of the market value of the bond. By assuming, �rst, that default amounts
to reneging on the �xed quantity δ of each bond, and second, that default leaves the state of the bond
market unchanged, we construct an equilibrium in which bondholders lose fraction δ of the market
value of their holdings of Peripheral bonds. Hence we can price default risk as Du�e and Singleton
(1999) do, re�ected in the term δdNt in (6).
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where µt (τ) and µ
∗
t (τ) are the expected returns on Peripheral and Core bonds, respec-

tively. Here, wealth is a�ected by two di�erent types of risk: Brownian variation in

bond prices, together with a Poisson risk of losing a fraction δ of the investment in

Peripheral bonds. The �rst two terms in (9) represent the expectation and variance of

the price variation component, while the last two terms are derived from default risk,

using E [δdNt] = δψt and Var [δdNt] = δ2ψt.

The �rst-order conditions are

µt (τ) = rt + At (τ)λt + ψtδ + ξt, (10)

µ∗
t (τ) = rt + A∗

t (τ)λt, (11)

where16

λt = γσ2

� ∞

0

(Xt (τ)At(τ) +X∗
t (τ)A

∗
t (τ)) dτ (12)

is the market price of (interest rate) risk, and

ξt = γψtδ
2

� ∞

0

Xt (τ) dτ (13)

is the compensation required by risk-averse arbitrageurs for default risk. Equation (11)

shows that the expected return on Core bonds equals the short-term riskless rate of

return, rt, plus the compensation A∗
t (τ)λt for the instantaneous price risk on a bond of

a given maturity τ . Analogous terms apply to the expected growth of Peripheral bond

prices, given by (10), plus the compensation ψtδ for the rate of expected loss due to

default, together with the instantaneous default risk premium ξt.

Constructing an a�ne solution. Market clearing (7) requires that the positions

of arbitrageurs equal those of the public sector minus those of the preferred-habitat

investors. Hence equations (12) and (13) imply

λt = γσ2

� ∞

0

[(St (τ)− Zt (τ))At (τ) + (S∗
t (τ)− Z∗

t (τ))A
∗
t (τ)] dτ, (14)

ξt = γψtδ
2

� ∞

0

(St (τ)− Zt (τ)) dτ. (15)

16Our notation in this section follows Vayanos and Vila (2021), except that we have reversed the
sign on the variables λ and h.
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Equations (14)-(15) can be used to solve for the unknown coe�cients At(τ), A
∗
t (τ),

Ct(τ), and C
∗
t (τ) in the bond price functions. The solution hinges on the observation

that if ψt is a deterministic function of time, then the left- and right-hand sides of (15)

can both be a�ne functions of rt (since preferred-habitat demand Z is a�ne in r).17

In this case, we can construct a (potentially) time-varying a�ne solution (8) for prices

and yields, in which the risk prices are also a�ne: λt = Λtrt + λ̄t and ξt = Ξtrt + ξ̄t.

Online App. B.1 spells out the a�ne solution in detail, stating the formulas for the

factor loadings Λt and Ξt and intercept terms λ̄t and ξ̄t consistent with (14)-(15).

2.1 Equilibrium yield curves and monetary policy transmission:

analytical results

Our model's explicit solution provides insight into yield curve dynamics and the trans-

mission of conventional and unconventional monetary policy. Here we discuss four main

�ndings. First, we decompose yields to distinguish the familiar expectations and dura-

tion extraction transmission channels of asset purchase policy from our model's novel

default risk extraction channel, which arises when debt is defaultable. Second, we show

that, if the default arrival rate is small, the Core and Peripheral term premia are ap-

proximately equal, and both depend on the aggregate net bond supply in the monetary

union, irrespective of its distribution across countries. Third, we show that default

risk allows for heterogeneous �uctuations in short-term sovereign rates in a monetary

union, including shifts in the short end of the Peripheral yield curve even when the

short-term riskless rate does not change. Finally, we show that conventional interest

rate policy transmits homogeneously across a monetary union, limiting its scope for

stabilizing asymmetric �uctuations.

Decomposing bond yields. In the absence of default risk, equations (10)-(11)

imply identical yield curves for Core and Periphery. But when Peripheral bonds are

defaultable, this opens up a spread relative to Core bonds. Using Ito's Lemma to

calculate the expected capital gain EtdPt(τ)/Pt(τ), then using (10) and the fact that

17If instead ψt is a stochastic process that depends on rt, then there are nonlinear terms on the
right-hand side of (15), so the a�ne solution fails.
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Pt(0) = 1, we can decompose the yield on a Peripheral bond of maturity τ as follows.18

Proposition 1 (Bond yield decomposition) Peripheral yields yt (τ) decompose as

yt (τ) =
1

τ
Et

� τ

0

rt+sds︸ ︷︷ ︸
Expected rates yEX

t (τ)

+
1

τ
Et

� τ

0

{
At+s (τ − s)λt+s −

σ2

2
[At+s (τ − s)]2

}
ds︸ ︷︷ ︸

Term premium yTP
t (τ)

+
1

τ
Et

� τ

0

δψt+sds︸ ︷︷ ︸
Expected default loss yDL

t (τ)

+
1

τ
Et

� τ

0

ξt+sds︸ ︷︷ ︸
Credit risk premium yCR

t (τ)

. (18)

For the proof, see Online App. B.2.1. Thus, Peripheral yields decompose into four

a�ne components. The default-related components are zero for Core:

yt(τ) = yEXt (τ) + yTPt (τ) + yDLt (τ) + yCRt (τ), (19)

y∗t (τ) = yEX∗
t (τ) + yTP∗

t (τ). (20)

The �rst component, which is equalized across countries, yEXt (τ) = yEX∗
t (τ), is the

yield in a default-free economy where investors are risk neutral. This is often called

the expected rates term, since it is the yield in a default-free economy where the �ex-

pectations hypothesis� is true: that is, the bond yield equals the expected value of

the short rate over the life of the bond. The second component is the term premium,

that is, the compensation required by a risk-averse arbitrageur for holding a bond with

a risky price.19 Since the price process of a defaultable bond di�ers from that of a

default-free bond, the Core and Peripheral term premia, yTP∗
t (τ) and yTPt (τ), are not

exactly equal. The third component, in the case of Peripheral bonds, is the expected de-

fault loss yDLt (τ), which requires compensation even for a risk-neutral investor. Fourth,

the yield on Peripheral bonds also carries a credit risk premium yCRt (τ), which is the

18Equivalently, the bond price can be written as a product of log-a�ne factors:

Pt(τ) = PEXt (τ)PTPt (τ)PDLt (τ)PCRt (τ) (16)

P ∗
t (τ) = PEX∗

t (τ)PTP∗
t (τ) (17)

where, for each i ∈ {EX,TP,DL,CR}, we have P it (τ) = exp
(
−τyit(τ)

)
, and likewise for Core.

19To simplify the decomposition, we include the Itô adjustment term −σ2

2 [At+s (τ − s)]
2
in the term

premium, since it is related to price variability. Note, though, that a term of this form also exists in
the case where arbitrageurs are risk-neutral.
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additional return required, beyond the expected default loss, in order for a risk-averse

arbitrageur to be willing to hold a defaultable bond. Together, the two components

yDLt (τ) + yCRt (τ), plus the cross-country di�erence in term premia yTPt (τ) − yTP∗
t (τ),

constitute the (sovereign) spread between Peripheral and Core debt.

This decomposition highlights four di�erent channels of monetary policy transmis-

sion. First, policy transmits through anticipated changes in the future path of interest

rates (e.g. due to forward guidance). Second, it operates through duration extraction,

by which central bank bond purchases reduce the market price of interest rate risk, as

in the one-factor version of Vayanos and Vila (2021). Third, policy transmits through

changes in the expected default loss, as central bank purchases may reduce the likeli-

hood of sovereign default, as explained in Sec. 3 below. Finally, it transmits through

default risk extraction, as we can see by using (15) to write the credit risk premium as

yCRt (τ) =
γδ2

τ
Et

� τ

0

[
ψt+s

� ∞

0

(St+s (τ)− Zt+s (τ)) dτ

]
ds .

This shows that central bank bond purchases reduce credit risk premia, both by ex-

tracting defaultable debt St+s (τ) from the market, and � once it is allowed to depend

on central bank purchases � by lowering the probability of default ψt+s on that debt.

Term premium and sovereign spread in a monetary union. While our

decomposition highlights a new transmission channel going through credit risk, our

model also delivers basic insights about the transmission of asset purchases via term

premia in a monetary union. For simplicity, but without loss of generality, we focus

on the model's ergodic distribution, in which the short rate rt is stochastic, but there

is no further time variation in the model's parameters. We suppress time subscripts

wherever possible when analyzing the ergodic distribution. As shown in Online App.

B.2.2, in this case the coe�cients At(τ) and A
∗
t (τ) are given by

A∗ (τ) =
1− e−κ̂τ

κ̂
, A (τ) =

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂

, (21)

where

κ̂ = κ− Λ = κ+ γσ2

� ∞

0

α (τ)

(
(1 + Ξ)

(
1− e−κ̂τ

)
κ̂

)2

+ α∗ (τ)

(
1− e−κ̂τ

κ̂

)2
 dτ,
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is the risk-neutral counterpart of κ, and Ξ = −γψδ2
�∞
0
α (τ)A (τ) dτ < 0 is the steady-

state value of the loading of the default risk price ξt on the short rate. We then obtain

the following result:

Proposition 2 (Term premia in a monetary union with low default risk) Let

the default arrival rate ψ be arbitrarily close to zero, ψ → 0, so that Ξ → 0. In this

limiting case, A (τ) = A∗ (τ). Term premia are then equalized across the two countries:

yTPt (τ) =
1

τ
Et

� τ

0

{
A (τ − s)λt+s −

σ2

2
[A (τ − s)]2

}
ds = yTP∗

t (τ),

and the market price of duration risk depends on the aggregate net bond supply in the

monetary union:

λt = γσ2

� ∞

0

[(S (τ) + S∗ (τ))− (Zt (τ) + Z∗
t (τ))]︸ ︷︷ ︸

aggregate net bond supply

A (τ) dτ.

A policy implication of this result is that, when default risk is arbitrarily small, asset

purchases a�ect Core and Peripheral term premia symmetrically, and this e�ect depends

only on the aggregate amount of purchases and not on how they are distributed across

jurisdictions. This benchmark will be helpful in interpreting our subsequent numerical

results, since our calibrated default arrival rate turns out to be fairly small.

Notice that if the term premia roughly coincide, then the sovereign spread is ap-

proximately the expected default loss plus the credit risk premium: y∗t (τ) − yt(τ) ≈
yDLt (τ)+yCRt (τ). In the ergodic distribution, both objects are independent of maturity,

and hence the spread is constant across τ and equals y∗t (τ)− yt(τ) ≈ ψδ +
(
Ξr̄ + ξ̄

)
.

What drives the short end of the yield curve? For a country without default

risk, the shortest maturity yield coincides with the short-term riskless rate:

lim
τ→0

y∗t (τ) = lim
τ→0

[
1

τ
Et

� τ

0

rt+sds+
1

τ
Et

� τ

0

A∗
t+s (τ − s)λt+s −

σ2

2

[
A∗
t+s (τ − s)

]2
ds

]
= rt + A∗

t (0)λt −
σ2

2

[
A∗
t+s (0)

]2
= rt,

where the second line applies L'Hôpital's rule and the Leibniz rule and the fact that

A∗
t (0) = 0. Therefore, in the absence of default risk, changes in structural parameters

can produce changes in the slope of the yield curve, but the short end of the curve is
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pinned down to equal the short-term rate.20

Hence, if we abstract from default, our model cannot reproduce yield curve shifts

like those observed in Europe in the context of Covid-19 and the PEPP announcement

(see Fig. 1 above). But once we allow for default risk, parallel shifts are possible, even

in the absence of changes in the short-term riskless rate.

Proposition 3 (Default risk-related shifts in the Peripheral yield curve) In a

country with default risk, the yield curve in the ergodic distribution is the sum of a con-

stant term that depends on default
(
ψδ + ξ̄

)
and a maturity-dependent a�ne term:

yt (τ) =
A (τ) rt + C (τ)

τ

=
(
ψδ + ξ̄

)
+

(1 + Ξ)
(
1− e−κ̂τ

)
τ κ̂

rt +

� τ
0

[
A (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (u)]2

]
du

τ
.

Therefore, the short-term Peripheral yield is given by

lim
τ→0

yt (τ) = (1 + Ξ) rt +
(
ψδ + ξ̄

)
.

For proof details, see Online App. B.2.2. Note that the default-related term ψδ + ξ̄

is independent of maturity τ , so this term produces a parallel shift in the yield curve

when any of its components change. Hence, the possibility of default a�ects even the

shortest yields, generating a spread between the shortest-maturity Peripheral yield and

the risk-free short rate. The spread includes the expected default loss ψδ. The second

term is the intercept ξ̄ of the credit risk premium ξt, which is

ξ̄ = γψδ2
� ∞

0

(S (τ)− h (τ)− α (τ)C (τ)) dτ. (22)

Equation (22) shows that changes in the default arrival rate ψ, the haircut δ or the

risk aversion parameter γ will, ceteris paribus, modify the credit risk premium and

hence shift the Peripheral yield curve. Asset purchases will also shift Peripheral yields,

including the shortest yields, by decreasing ξ̄ through two channels. First, they extract

default risk from arbitrageurs' balance sheets (reducing the quantity S(τ) that private

20This result generalizes beyond the one-factor model considered here. Even in a multi-factor context,
an instantaneous bond without default risk satis�es A∗ (0) = 0 and C∗ (0) = 0, implying y∗t (0) = rt.
See Vayanos and Vila (2021), Lemma 3.
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markets must hold). Second, if asset purchases reduce the probability of default, this

will amplify the decrease in ξ̄. In the next section, we show how monetary and �scal

interactions like those in the euro area imply that central bank sovereign bond purchases

reduce �scal pressure, and thereby lower the probability of Peripheral default.

Conventional monetary policy transmission. Finally, we analyze how default

risk shapes the transmission of conventional (interest rate) monetary policy across the

monetary union. For the purpose of this particular discussion, we interpret rt as rep-

resenting the interest paid by the central bank on its deposit facility.21 Concretely, as

in Vayanos and Vila (2021), we may assume that arbitrageurs are actually commer-

cial banks, with access to the central bank's deposit facility. With this interpretation,

τ−1At(τ) represents the reaction of the Peripheral yield curve, on impact, to a mone-

tary policy shock, and A
′
t(τ) represents the reaction of the instantaneous forward rate,

it (τ) ≡ −∂ log(Pt(τ))
∂τ

. Therefore:

Proposition 4 (Response to short-term rates) The yield curve and the instanta-

neous forward rate both react less to a monetary policy shock in Periphery, compared

with Core:
∂y∗t (τ)

∂rt
=

1− e−κ̂τ

τ κ̂
>

(1 + Ξ)
(
1− e−κ̂τ

)
τ κ̂

=
∂yt (τ)

∂rt
.

∂i∗t (τ)

∂rt
= − ∂

∂rt

∂ log (Pt (τ))

∂τ
= e−κ̂τ > (1 + Ξ) e−κ̂τ =

∂it (τ)

∂rt
.

Since Ξ < 0 (see Online App. B.2.2), the reaction of Peripheral yields is damped

relative to that of Core yields. But in practice, the di�erence is small: if the default

arrival rate ψ is su�ciently close to zero, then Ξ ≈ 0, so the responses of the two yield

curves are approximately equal. In the quantitative section below we will see that the

data call for a fairly small ψ. Therefore, in our calibrated model, the responses of Core

and Peripheral yields to conventional monetary shocks are virtually indistinguishable.

21This implies that the short-term Core yield, limτ→0 y
∗
t (τ), coincides with the deposit facility rate.

Of course, this is not precisely true in the euro area data, where the yield on short-term core (e.g.
German) bonds typically exhibits a non-negligible and time-varying spread vis-à-vis the ECB's deposit
facility rate, re�ecting institutional features that fall outside the scope of our analysis.
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3 A simple model of default risk

Thus far, we have treated the default arrival rate ψt as an arbitrary exogenous sequence.

In practice, however, policy shocks like the PEPP announcement or the pandemic out-

break are likely to a�ect the probability of default perceived by the market. Therefore,

we next build a minimalist model of monetary and �scal interactions that endogenizes

ψt in a way that su�ces for our analysis of the yield curve. We assume at this point

that the governments and the monetary authorities commit to �xed time paths for their

respective issuances and purchases of bonds, as long as no rollover crisis occurs.22 The

one key policy choice that we will endogenize is Periphery's decision whether to repay

or default in case of a rollover crisis.

Budget constraint of the government. The �ow budget constraint of the Pe-

ripheral government can be written as

Primary de�cit (det.)︷︸︸︷
dt +

Bond redemptions︷ ︸︸ ︷
ft (0) =

Bond issuance︷ ︸︸ ︷� ∞

0

Pt (τ) ιt (τ) dτ +

CB remittances︷︸︸︷
Γt +

Emergency taxation︷︸︸︷
Πt ,

(23)

where dt is the deterministic part of the primary de�cit23 and ft (0) the amount of debt

maturing, which must be �nanced with new bond issuances ιt (τ), income from central

bank remittances Γt, or through adjustments in taxation (or reduced spending) Πt.

Our assumption that bond issuances ιt (τ) are deterministic implies that redemptions

ft(0) are deterministic too. Since the government takes Γt as given, Πt represents the

part of primary de�cit that must be adjusted to ensure that the budget constraint (23)

is satis�ed at all times. In the context of a rollover crisis, we may suppose that Πt

represents emergency taxation or, equivalently, emergency spending cuts.

Rollover crisis. Mirroring Corsetti and Dedola (2016), we focus on self-ful�lling

debt crises à la Calvo (1988) or Cole and Kehoe (2000). We assume that investors

sometimes, with a certain probability, coordinate on a pessimistic equilibrium in which

they stop purchasing Periphery's debt, thus forcing its government to stop issuing bonds

(ιt (τ) = 0, for all τ).24 The arrival of this rollover crisis is governed by a Poisson process

22This assumption is imposed in order to preserve the ATSM structure derived in Sec. 2.

23This may include spending or revenue items that are �hard� to change in the short run, such as
pensions, bene�ts, the government wage bill, etc.

24We assume that the central bank cannot purchase new sovereign bonds at issuance, consistently
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with rate parameter η. This random event is unrelated to the amount of a country's

debt or its �scal position.

At the onset of the crisis, the government must decide whether to default on its

debts or to continue repaying bonds that mature. If it decides to repay, the duration

of the crisis is stochastic, governed by a Poisson process with parameter ϕ, and the

government will be forced to �nance its de�cits and debt repayments with revenues

from emergency taxation and/or seigniorage as long as the crisis persists. Emergency

taxes represent a utility loss for the government, which it seeks to minimize. Under

these assumptions, the government's cost of repayment conditional on a rollover crisis at

time 0, denoted by V R
0 , incorporates the present discounted value of emergency taxation

incurred during the crisis, valued at a subjective discount rate r̂, plus the continuation

cost Vt
[
ft (·) , fCBt (·)

]
after the crisis ends:

V R
0

[
f0 (·) , fCB0 (·)

]
= E0


� ∞

0

e−(r̂+ϕ)t

 Πt︸︷︷︸
Flow of emergency taxes

+ ϕVt
[
ft (·) , fCBt (·)

]︸ ︷︷ ︸
Loss after the crisis

 dt

 .

(24)

If instead the government decides to default, it restructures by repudiating a �xed

fraction δ of each outstanding bond. This restructuring ends the rollover crisis, but

imposes a stochastic �xed cost χ on the government, with c.d.f. Φ(χ). Thus, the loss

due to default is the post-crisis continuation cost plus the �xed cost:

V D
0

[
f0 (·) , fCB0 (·)

]
= V0

[
f0 (·) , fCB0 (·)

]
+ χ. (25)

Note that (25) says that default leaves the �scal position of the government unchanged,

with the same debts it faced before the crisis. While this may seem counterintuitive,

we make this assumption for two reasons. First, it is empirically realistic: Arellano

et al. (2023) show that debt is rarely decreased by a restructuring. Second, it simpli�es

our asset pricing analysis, keeping the outstanding bond supply �xed, allowing us to

seek a bond price solution that is unchanged by default.25 Thus, in our model, default

with actual restrictions on the ECB's asset purchase programs. Thus, the fact that private investors
stop purchasing new bonds e�ectively prevents the Peripheral government from issuing new bonds.

25Our interpretation of (25) is that after default, the Peripheral government immediately issues
bonds that return it to the previously anticipated path of debt. Bondholders lose a fraction δ of their
holdings, while the proceeds from the sale of new bonds accrue to international organizations, such as
the IMF, that may intervene in the case of a sovereign debt crisis.
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serves only to relieve short-term �scal pressure during a rollover crisis, not to improve

the government's long-term �scal standing.

Default decision. The government's decision to default at the beginning of a crisis

will thus depend on min
[
V R
0 , V

D
0

]
. The continuation cost is given by

V0
[
f0 (·) , fCB0 (·)

]
= E0


� ∞

0

e−(r̂+η)t ηmin
[
V R
t , V

D
t

]︸ ︷︷ ︸
Loss at onset of next crisis

dt

 . (26)

Equations (24)-(26) jointly determine the loss functions V R
t , V D

t , and Vt. For simplicity,

we focus on the limit where crises are low-probability events (η → 0), which means that

the continuation cost is approximately zero, Vt → 0, so that V D
0 → χ. Intuitively, the

country compares the �xed cost χ to the present value of the expected emergency-tax

deadweight cost V R
0 . Then the probability of default, conditional on a rollover crisis at

time 0, is the probability that the cost of repayment exceeds the �xed cost χ:

P (default at time 0|crisis) = P
(
V R
0 > V D

0

)
≈ P

(
V R
0 > χ

)
= Φ

(
V R
0

)
. (27)

Equations (27), (24) and (23), and the fact that there are no issuances during the

rollover crisis (ιt (τ) = 0 for all τ), imply that the unconditional arrival rate of default

is ψt = ηΦt, where

Φt ≡ P (default at time t|crisis) = Φ

(� ∞

0

e−(r̂+ϕ)s {dt+s + ft+s(0)− Γt+s} ds
)
. (28)

Therefore, conditional on a rollover crisis materializing at time t, the probability that

the government chooses to default increases with the discounted stream of primary

de�cits and bond redemptions during the crisis (as they both imply higher liquidity

needs), and decreases with the discounted stream of remittances from the central bank

during the crisis (a source of government income that reduces liquidity needs).

Remittances rule. To evaluate expression (28), we must specify the central bank's

remittances rule. More speci�cally, what matters is its remittances rule during a rollover

crisis � its remittances policy under other circumstances is irrelevant for our analysis. It

is plausible to conjecture that, should a full-blown rollover crisis hit a national govern-

ment, the central bank would follow a rule under which increased central bank holdings

of that government's bonds would not reduce resources for that government for the
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duration of the crisis.26 We call such a rule sovereign-supportive. Formally, we de�ne a

sovereign-supportive rule Γt = Γ
({
fCBt+u(τ)

}
u≥0,τ≥0

)
as a rule that, in a rollover crisis,

satis�es:
∂

∂ε

[� ∞

0

e−(r̂+ϕ)uΓ
({
fCBt+u (τ) + εht+u (τ)

}
u≥0,τ≥0

)
du

]
≥ 0, (29)

where ht+u (τ) ≥ 0 is a non-negative perturbation to the time-(t + u) central bank

holdings of Periphery bonds with residual maturity τ . That is, under a sovereign-

supportive remittance rule, a central bank's decision to increase its future holdings of

peripheral debt would not decrease the discounted stream of dividend payments to the

peripheral government in case of � and for the duration of � a rollover crisis. It trivially

follows that, for any rule satisfying this property, increasing central bank purchases of

peripheral bonds (weakly) reduces the endogenous default arrival rate.

Having established this general result, we still need to specify a particular crisis-

time remittance rule to use in our numerical analysis. There is little guidance as to

how Eurosystem national central banks (NCBs) would adapt their dividend policy

should their country's government be hit by a rollover crisis. In practice, NCB dividend

payments are typically based on their accounting pro�ts, whereby a fraction of these is

paid out as dividends to the respective government and the rest is retained as capital.27

Thus, it seems plausible that crisis-time dividends would continue to be based on pro�ts.

However, with a pro�t-based rule in our model, we would no longer be able to

obtain an a�ne solution for bond yields. This is because the default probability (28)

would depend on bond prices and therefore would no longer be deterministic, which as

explained in Sec. 2 is essential for obtaining an a�ne solution.28 With this limitation

in mind, we assume the following remittance rule:

Γt = ζfCBt (0)− Γ̄, (30)

26The central bank is assumed to stick to its bond purchase commitments when the private bond
market enters into a rollover crisis.

27That being said, dividend rules are not harmonized across the Eurosystem. Each NCB au-
tonomously decides how much of its accounting pro�t to pay to its national government, with criteria
that vary across NCBs and also change over time.

28Online App. A shows how to calculate the central bank's pro�ts in our model, and explains why a
remittance rule based on pro�ts would render our a�ne solution inapplicable. In a nutshell: the interest
income on the central bank's bond portfolio depends on the price paid for each bond. Moreover, pro�ts
depend on interest payments on reserves. Keeping track of the stock of reserves introduces another
endogenous state variable, and the evolution of this stock also depends on bond prices.
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such that the NCB rebates to the Peripheral government a fraction ζ ∈ [0, 1] of the in-

�ow from redemptions of Peripheral government bonds (fCBt (0)), minus a �xed amount

Γ̄ aimed at preemptively protecting its capital during the rollover crisis against a pos-

sible default.29 Rule (30) is compatible with an a�ne solution for bond yields, as

redemptions of central bank-held bonds are assumed to follow a deterministic path.30

Also, it is �sovereign-supportive� as de�ned above.31

The parameter ζ allows us to vary the �generosity� of the Peripheral national central

bank's dividend policy in case of a rollover crisis. At one extreme, ζ = 1 represents a

case in which the NCB transfers its entire in�ow from Peripheral bond redemptions.

This is (much) higher than the accounting pro�ts earned by the central bank on those

bonds � as one needs to deduct the cost of purchasing them.32 Therefore, this can

be seen as a very generous crisis-time dividend policy.33 At the other extreme, ζ = 0

represents a case in which the NCB stops all dividend payments to its government

during a rollover crisis (over and above net transfers in the amount −Γ̄), motivated e.g.

by concerns about preserving its capital base. This case is particularly useful because it

allows us to shut down the channel through which central bank asset purchases reduce

the endogenous default probability.

29In the event of a default, we assume there is no discrimination between public and private bond-
holders. Therefore, upon default the NCB would take a hit to its capital, which depending on its
pre-default value could become even negative. As discussed by Del Negro and Sims (2015), among
others, central banks can operate with negative capital, within certain limits related to their future
stream of seigniorage. Thus, Γ can be seen as re�ecting these concerns about central bank capital
during a rollover crisis. Of course, in the event of default and for su�ciently negative capital, the NCB
may still require recapitalization ex post by the government, via negative dividends.

30Notice that central bank remittances to the Peripheral government depend on its portfolio of
Peripheral bonds only, instead of its whole portfolio of Core and Peripheral bonds. This is consistent
with the fact that, in the Eurosystem, most sovereign bonds are held by the NCBs of the sovereigns
that issued them, with only a small fraction of holdings subject to �risk sharing� across NCBs.

31Under the given rule, Γ
({
fCBt+u (τ) + εht+u (τ)

}
u≥0,τ≥0

)
= ζ

(
fCBt+u (0) + εht+u (0)

)
−Γ̄. Therefore,

∂Γ
∂ε = {ζht+u(0)}u≥0, and hence the condition (29) is just ζ

�∞
0
e−(r̂+ϕ)uht+u(0)du ≥ 0, which is true

since the constant ζ and the perturbation h are both non-negative.

32The income earned on a zero-coupon bond is the di�erence between its payment at redemption
(i.e. its face value) and the price paid for it. Thus, the total interest income from the central bank's
bond portfolio at a given point in time equals bond redemptions, fCBt (0), minus the total amount
paid for those bonds by the central bank. See Online App. A for further details.

33Of course, such a dividend policy would erode the central bank's capital position. Online App. A
derives the dynamics of central bank capital under our remittance rule.
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Default rate. Under remittance rule (30), the default rate equals

ψt = ηΦ

(� ∞

0

e−(r̂+ϕ)s
{
dt+s + ft+s(0)− ζfCBt+s (0) + Γ̄

}
ds

)
. (31)

Equation (31) shows that the three factors a�ecting the default probability (primary

de�cits, total bond redemptions, and redemptions of central bank-held bonds) do so

through a single su�cient statistic, which we may call �scal pressure, Ft:

Ft ≡
� ∞

0

e−(r̂+ϕ)s
(
dt+s + ft+s(0)− ζfCBt+s (0)

)
ds. (32)

Hence, as long as ζ > 0, central bank asset purchases a�ect the default probabil-

ity, which is ψt = ηΦ
(
Ft +

Γ̄
r̂+ϕ

)
. Bond purchases imply higher future redemption

payments from the government to the central bank ({fCBt+s (0)}s≥0) conditional on, and

during, a rollover crisis. But a fraction ζ of those repayments is rebated back to the gov-

ernment as dividends, partly alleviating the liquidity stress on the government from its

total redemptions ({ft+s(0)}s≥0). This reduces the cost of emergency taxation during a

crisis, making the government less likely to choose default once a rollover crisis arrives.

Underlying this mechanism is the central bank's (unique) ability to �nance bond pur-

chases by expanding the monetary base (see Online App. A.1 for explicit modelling of

the central bank's accounts). This ability, together with the links between the central

bank and government budget constraints via dividends, explains why central bank asset

purchases can reduce sovereign default risk in our model.

This framework makes several stark assumptions which, together, deliver tractabil-

ity. On one hand, we focus on perfect-foresight scenarios for �scal policy and central

bank purchases, assuming that the government returns to its previous path of debt after

default occurs. Moreover, our remittance rule (30) ensures that the default probabil-

ity depends only on de�cits and bond redemption �ows. Together, these assumptions

imply that �scal pressure is foreseeable, so default is an event that arrives at a known,

deterministic Poisson rate ψt = ηΦt. This preserves our ability to combine the default-

pricing framework of Du�e and Singleton (1999) with an ATSM solution, maintaining

the analytical results derived in Sec. 2.1. But now, unanticipated changes in �scal

conditions will shift the default probability, with potential to explain the yield curve

dynamics seen over the course of the Covid-19 crisis. We next explore these issues in a

quantitative version of our model.
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4 Calibration

4.1 Quantitative model

To calibrate the model, we interpret the two countries in the union, Core and Periph-

ery, as Germany (DE) and Italy (IT), respectively.34 Since in�ation and growth were

relatively low in much of the euro period, especially as policy rates approached their ef-

fective lower bound (ELB), we calibrate the model in nominal terms, without adjusting

for real GDP growth or in�ation.

Multifactor model. For quantitative realism, we enhance the previous one-factor

model with additional shocks. While a model where the risk-free rate rt is the only

stochastic factor can �t the level of the yield curve and its responsiveness to the pan-

demic and the PEPP announcement, the implied yields are much less variable than

those observed in the data.35 To better �t the variance of yields, we now allow for two

mean-zero factors, εht and εh∗t , that shift preferred-habitat demand for Periphery and

Core bonds as follows:

Zt (τ) = h (τ)− ς (τ) εht + τα (τ)
(
yt (τ)− δ̂ψt

)
,

Z∗
t (τ) = h∗ (τ)− ς∗ (τ) εh∗t + τα∗ (τ) y∗t (τ) ,

(33)

where the functions ς (τ) ≥ 0 and ς∗ (τ) ≥ 0 represent the impacts of εht and εh∗t on

demand for each maturity τ , respectively. We group the risk-free rate and the demand

shifters into a vector of factors qt ≡ [rt, ε
h
t , ε

h∗
t ]⊤ that follows the process

dqt = −K (qt − r̄E1) dt+ ΣdBt, (34)

whereK and Σ are 3×3 matrices, E1 = (1, 0, 0)⊤, and Bt is a 3×1 vector of independent

standard Brownian motions.

We conjecture that there exist deterministic sequences of functions (At (τ) , Ct (τ))

and (A∗
t (τ) , C

∗
t (τ)), where At (τ) and A

∗
t (τ) are 3 × 1 vectors, such that bond prices

34Taken literally, this means that arbitrageurs hold bonds of only one country with default risk, thus
limiting the scope for diversi�cation across issuers. An alternative interpretation is to assume that
an Italian default would lead to a collapse of the monetary union and the default of other peripheral
countries. This assumption may be relevant for our results, as otherwise arbitrageurs would be able
to diversify, reducing the exposure of their portfolios to the default of any particular country.

35The one-factor version of our model is analyzed in our earlier working paper, Costain et al. (2022).
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are log-a�ne in qt:

Pt (τ) = e−[At(τ)
⊤qt+Ct(τ)], P ∗

t (τ) = e−[A
∗
t (τ)

⊤qt+C∗
t (τ)]. (35)

The solution procedure from our earlier one-factor model generalizes to this multi-factor

framework. For details, see Online App. B.3.

Calibration strategy. To calibrate this multifactor model, we proceed in two

steps. First, we calibrate a set of parameters that can be directly inferred from the data,

including some monetary and �scal variables that a�ect the bond market in a time-

varying way. Using this information, we can construct a distance metric to evaluate

the model's quantitative performance relative to yields data. Hence, in a second step,

we estimate the remaining parameters by minimizing this metric.

Numerical method. The numerical method is described in Online App. C.2.36

It requires �rst solving the stationary model under constant �scal pressure, and then

computing the transitional dynamics under alternative paths for �scal pressure. Both

cases can be characterized as systems of partial di�erential equations, which can be

solved by the �nite di�erences method.

As Hayashi (2018) has shown, there may be multiple equilibria in the Vayanos and

Vila (2021) model. In this respect, we have tried di�erent initial guesses when solving

the stationary model, and our algorithm always converged to the same solution.

4.2 Observables

We extract data on one-month, one-year, �ve-year, ten-year, and twenty-year zero

coupon yields on German and Italian sovereign bonds, and also the one-month euro

overnight interest swap (OIS) rate from Datastream. We consider a sample stretching

from the establishment of the euro in January 1999 up to December 2022.

Short-term rates. We �rst calibrate the risk-free short rate process, rt.
37 We in-

terpret this rate as the yield on one-month zero-coupon German sovereign bonds. The

German one-month rate is only available back to 2011; therefore we splice it to the cor-

36The actual numerical implementation is programmed both as a discrete-time system of di�erence
equations, and as a �nite-di�erence approximation to the original continuous time problem. Both
implementations give the same results. Online App. C.3 describes the discrete-time method.

37The time unit in our numerical model is one month. However, in the main body of the text we
report yields and describe the parameters in annualized terms, for ease of interpretation.
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responding one-month OIS rate for dates prior to 2011.38 The spliced series has a mean

of 122 basis points (bp) per annum, and its standard deviation is 179 bp. Running an

AR(1) estimate on the monthly spliced series, we �nd that the monthly autocorrelation

is 0.9948. We parameterize the Ornstein-Uhlenbeck process that governs the risk-free

rate in our model for consistency with these statistics. In annualized terms, this implies

r̄ = 1.22%, κ = 0.062, and σ = 63 bp.

Fiscal variables and asset purchases. Solving our model also requires forecasts

of �scal variables and of Eurosystem asset purchases. We need these both because

the bond price solution (Sec. 2) depends on arbitrageurs' current and future net bond-

holdings, and because the default arrival rate (Sec. 3) depends on the Peripheral gov-

ernment's current and future liquidity needs. We take forecasts from several di�erent

sources and vintages. We employ two-years-ahead Eurosystem forecasts, and extend

them using a Banco de España in-house debt sustainability model to produce long-term

projections of �scal trends at annual frequency for Germany and Italy, including the to-

tal face value of sovereign debt, primary de�cits, and interest charges.39 We interpolate

these data to monthly frequency for use in our simulations.

Regarding Eurosystem bond absorption under the APP, we construct long-term

projections of total Eurosystem holdings of German and Italian sovereign bonds, based

on ECB announcements. Similarly, we derive a forecast for Eurosystem bond absorp-

tion under the PEPP, for forecast vintage March 2020, from the ECB's initial PEPP

announcement at that time. Thus, subtracting predicted Eurosystem bond absorp-

tion from predicted bond supply, for each country, we can infer the total debt of each

sovereign to be absorbed by the private sector at any future time, looking forward from

any available forecast date.

Maturity distributions. The data discussed so far only address total quantitites

of debt issued and absorbed. To calculate yields, we must also specify how bonds are

distributed across maturities. We make several assumptions to characterize debt matu-

rity distributions in a tractable way. We assume a maximum maturity τmax of 20 years.

From the ECB, we obtained data on the maturity distribution of Eurosystem holdings

38Alternatively, we could calibrate the risk-free rate process directly to OIS rates over the whole
sample. However, this would oblige us to model the di�erences between OIS rates and German rates.
Therefore, to simplify our model of sovereign yields, we interpret short rates as sovereign rates too, as
far as data availability permits.

39In particular, we employ an extension of the model introduced by Burriel et al. (2022).
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Figure 2: Cross-sectional asset distributions
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Data source: ECB data, smoothed by the authors.
Left panel : Cumulative distribution function, across maturities, of ECB holdings of German and
Italian bonds, after smoothing.
Middle panel : Density, across maturities, of German and Italian bonds, approximated by a
quadratic function. Called g(τ) in the text.
Right panel : Density of issuances, across maturities, that generates the PDF of the middle panel
as the asset distribution in the long run. Called ῑ(τ) in the text.

of German and Italian debt of up to 20 years' maturity, as of July 2021. We assume for

simplicity that the maturity distribution of these holdings replicates the distribution

of debt in the market.40 We then construct the density of these ECB holdings across

maturities τ , at face value, smoothing it by computing its moving average over windows

of 25 months and then �tting a quadratic polynomial. We call this smoothed density

function g(τ), shown in the middle panel of Fig. 2. The corresponding cumulative dis-

tribution of bond holdings is shown in the left panel of the �gure. In our simulations,

we suppose that the initial density of gross bonds outstanding is proportional to g(τ).

Thus, given the debt levels D∗
t and Dt of Germany and Italy at some initial time t, the

initial bond densities are set to f ∗
t (τ) = D∗

t g(τ) and ft(τ) = Dtg(τ), respectively. Sim-

ilarly, we set the initial density of Eurosystem bond holdings (if nonzero) in proportion

to g(τ) in both countries.

40In practice, the maturity distribution of Eurosystem bond holdings broadly replicates that of the
eligible universe, re�ecting the �market neutrality� principle of Eurosystem asset purchases.
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The time path of the distribution of net bond supply also depends on how issuances

and central bank purchases are distributed across maturities. We calculate the density

of issuances ῑ(τ) that, if maintained at a constant rate, would generate the observed

maturity distribution g(τ).41 We assume that new bond issuances ιt(τ) are always

distributed proportionally to ῑ(τ), which is shown in the right panel of Fig. 2. To re�ect

the �market neutrality� of Eurosystem purchase design � that purchases should re�ect

available supply to avoid distorting relative prices � we assume that asset purchases are

always distributed proportionally to g(τ). Given these assumptions about the initial

distributions and the distributions of issuances and purchases, together with forecasts

of total face value at each point in time, we can trace forward the distributions f ∗
t+s(τ),

ft+s(τ), f
CB,∗
t+s (τ), and fCBt+s (τ) from any forecast date t to any future time t+ s.

Anticipated net debt and default. We will consider equilibria that take as

given a deterministic time pro�le of net bond supply. Concretely, given forecasts of

�scal variables and Eurosystem asset purchases from a given forecast date t, we can

calculate the net debt ft+s (τ) − fCBt+s (τ) of maturity τ that must be absorbed by the

market at each future time t+ s, for s ≥ 0. Agents in the model regard this time path

of net bond supply as a commitment of the public sector.

The data discussed above also give us su�cient information to calculate the default

rate at any time t. First, we calculate the Italian de�cit dt+s as the sum of its forecasted

primary de�cit and interest charges. Then, given ft+s (τ) and f
CB
t+s (τ) for each τ , we can

calculate the net bond redemptions paid by the Italian government, ft+s (0)−ζfCBt+s (0).
Thus, given forecasts of a particular vintage t, we have all the data needed to calculate

�scal pressure Ft from (32) and the default rate ψt from (31). The impact of default

also depends on the haircut parameter δ, which we set at 25 percent (δ = 0.25) in light

of international evidence.42

We will compare equilibria looking forward from three key points in time. First,

we construct a pre-pandemic forecast {dt+s,ft+s(τ), f ∗
t+s(τ)}

pre−pan
τ≥0,s≥0 using the last vin-

tage of �scal forecasts we have available prior to the pandemic (December, 2019). We

assume that the anticipated Eurosystem portfolio {fCBt+s (τ), fCB∗
t+s (τ)}pre−panτ≥0,s≥0 is deter-

41The constant distribution of issuances ι(τ) that generates maturity distribution g(τ) as a �xed

point is simply ι(τ) = −dg(τ)
dτ for τ < τmax, with a point mass at τ = τmax. We have smoothed ι(τ)

with a moving window of 49 months, and rescaled it to obtain ῑ(τ) ≡
(� τmax

0
ι(s)ds

)−1

ι(τ).

42Cruces and Trebesch (2013) �nd haircuts on the order of 50% in evidence drawn mostly from
emerging markets; for advanced economies we consider a smaller haircut more plausible.
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mined by the announced trajectory of the APP as of end-2019. Second, we construct

a pre-PEPP (or post-outbreak) forecast {dt+s,ft+s(τ), f ∗
t+s(τ)}

pre−PEPP
τ≥0,s≥0 , which takes

account of increased de�cits and debt implied by the pandemic, by averaging forecast

vintages from December, 2019 and June, 2020.43 We also construct an updated Eurosys-

tem portfolio path {fCBt+s (τ), fCB∗
t+s (τ)}pre−PEPPτ≥0,s≥0 that includes the moderate expansion

of the APP envelope (¿120 billion) announced on May 12, 2020. Third, we update

the anticipated portfolio again to include the initial ¿750 billion envelope of PEPP

purchases, as announced on March 18, 2020, to de�ne {fCBt+s (τ), fCB∗
t+s (τ)}post−PEPPτ≥0,s≥0 .

We assume no additional �scal news at the time of the PEPP announcement, setting

{dt+s,ft+s(τ), f ∗
t+s(τ)}

post−PEPP
τ≥0,s≥0 = {dt+s,ft+s(τ), f ∗

t+s(τ)}
pre−PEPP
τ≥0,s≥0 .44

Preferred-habitat demand. The average sovereign debt of Italy and Germany

over the ELB period 2013-2019, net of Eurosystem holdings, was 2,097 billion euros

and 1,856 billion euros, respectively. To infer how much debt arbitrageurs must absorb,

we next calibrate preferred-habitat demand. Eser et al. (2023), Table 1, report that

the fraction of net debt of the big-four euro area economies held by preferred-habitat

investors (excluding Eurosystem central banks) was 41.4% in 2014, and 47.0% in 2018.45

We consider the mean of these two �gures � 44.2% of each country's net debt � and

calibrate the intercept terms h(τ) and h∗(τ) accordingly. That is, we scale the intercepts

so that their sums across all maturities τ , H ≡
� τmax

0
h(τ)dτ = 927 billion euros and

H∗ ≡
� τmax

0
h∗(τ)dτ = 820 billion euros, equal 44.2% of Italy's and Germany's sovereign

debt net of Eurosystem holdings in this period.

The impact of preferred-habitat investors also depends on how their demand is

distributed across maturities. Lacking independent evidence on the distribution of

preferred-habitat demand, we assume that each component of the demand functions

Zt(τ) and Z
∗
t (τ) is proportional to g(τ). This assumption is not an unreasonable bench-

43To adequately capture expectations of future de�cits and net bond supply in the early, pre-PEPP
weeks of the pandemic crisis, we average across �scal forecasts in the December, 2019 and June,
2020, ECB/Eurosystem projections. The June projections included an updated and quite pessimistic
estimate of the impact of the pandemic, but were based partly on information that was not available
to investors in mid-March. Thus, the average of the December and June �scal projections provides a
reasonable proxy of investors' expectations immediately ahead of the PEPP announcement.

44Fig. 8, in Sec. 5.4 below, illustrates how the anticipated paths of debt and other �scal variables
change with the pandemic outbreak and the PEPP announcement, and how these changes transmit
to the default probability and yields.

45Eser et al. (2023) classify insurance companies and pension funds (ICPFs) and the Eurosystem
central banks as preferred habitat investors.
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mark, since governments have an incentive to issue more of any given class of debt,

relative to others, if there is more demand for that class of debt. Thus, for τ ≤ τmax,

we set the intercepts to h∗(τ) = H∗g(τ) and h(τ) = Hg(τ), with zero demand for higher

maturities. Analogously, we scale ς∗(τ), ς(τ), α∗(τ), and α(τ) in proportion to g(τ) as

well (see Sec. 4.4 below). Under these assumptions, we can use the market clearing

equations (7) to calculate the amounts that must be held by arbitrageurs at all times,

for each country and maturity.

4.3 Constructing a distance criterion

The model's remaining parameters are not directly observable. Therefore, we jointly

calibrate them by minimizing a distance criterion that measures model �t. Our distance

criterion assesses �t along two dimensions: (i) �rst and second moments of yields over

the long run; and (ii) yield curve shifts in response to the PEPP announcement.

Long-run moments. For the �rst component of the distance criterion, we compare

our full sample of yields (1999-2022) to the long-run distribution of yields in the model,

when �scal pressure is at its long-run value. Constant �scal pressure implies that

the default rate is also constant, ψt = ψ, where ψ is a parameter to be included in

the calibration. Using the analytical solution of the model's ergodic distribution, we

calculate the sum of squared deviations between the model and the data for selected

�rst and second moments:

� Mean yields on 1m, 1Y, 5Y, and 10Y DE bonds, and 1Y, 5Y, and 10Y IT bonds;

� The standard deviations of yields on 1m, 1Y, 5Y, and 10Y DE bonds, and 1Y,

5Y, and 10Y IT bonds;

� The correlations between 1Y and 10Y yields, for DE and IT bonds

� The cross-country correlation between 1Y yields, and the cross-country correlation

between 10Y yields.

When calculating this sum of squared deviations, we express all yields and their stan-

dard deviations in annualized percentage points, and we express all correlations in

percentage points. We abstract from 20-year bonds, and Italian 1-month bonds, since

these are unavailable for the full sample; for German 1-month yields we use the spliced

series of OIS and German rates described earlier.

33



Figure 3: Baseline PEPP purchase scenario
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Note: Baseline model scenario for PEPP purchase expectations as of March 2020. Blue circles:

DE; red squares: IT; black: aggregate face value. E�ect on yields is shown in Figs. 6 and 7.

PEPP announcement. The second component of the distance criterion mea-

sures the model's �t to the shift in yield curves that was observed after the PEPP

announcement, in the context of the time-varying �scal conditions that were then fore-

seen. The PEPP was announced on March 18, 2020, with an initial purchase envelope

of ¿750 bn.46 Our calculations analyze the portion of this envelope that was dedicated

to purchases of German and Italian sovereign bonds. The surprise nature of the an-

nouncement, in an emergency meeting of the ECB Governing Council, makes it easy

to map this episode into our model.47

We model the impact of the PEPP announcement by comparing equilibrium yields,

from March 2020 onwards, under the pre-PEPP and post-PEPP information sets de-

scribed in Sec. 4.2. However, since the PEPP permitted a �exible path of purchases,

in contrast to the earlier APP, we must also make some assumptions regarding arbi-

trageurs' expectations, in March 2020, about the eventual use of PEPP's margins of

�exibility. Our scenario assumes that arbitrageurs anticipated PEPP purchases through

46The press release stated: �This new PEPP will have an overall envelope of ¿750
billion. Purchases will be conducted until the end of 2020 and will include all
the asset categories eligible under the existing asset purchase programme (APP).� See
https://www.ecb.europa.eu/press/pr/date/2020/html/ecb.pr200318_1∼3949d6f266.en.html.

47We focus on the immediate e�ects of PEPP as it was originally announced in March, with an
overall envelope of 750 billion euros to be spent over the course of 2020; these e�ects capture well the
actual causal impact of the announcement, given its unexpected nature. Subsequent recalibrations of
the PEPP purchase envelope (in June and December that year) were largely anticipated by the market,
according to various surveys.
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June 2020 with perfect foresight � implying some frontloading, and some excess pur-

chases of Italian debt, compared with Italy's capital key.48 We assume that from July

to December, PEPP purchases were expected to accrue at a constant pace, up to the

original PEPP envelope, while maintaining the deviations from capital key that were

observed through June. Fig. 3 graphs total PEPP holdings, in the net purchases phase

of 2020, under this scenario.49 After the end of net purchases in December 2020, our

scenario assumes that holdings decline naturally as the portfolio matures (not shown

in the �gure).

We compare the model-generated shift in yields when the post-PEPP scenario is

substituted for the pre-PEPP scenario to the observed change in yields from 18 to

20 March, 2020, expressing all yields in annual percentage points. Then the �nal

component of our distance criterion is the sum of squared deviations between the model

and the data for the following statistics:

� The change in yields on 1m, 1Y, 5Y, 10Y, and 20Y DE and IT bonds from 18 to

20 March, 2020.

4.4 Minimizing the distance criterion

Functional forms. We now impose further functional form restrictions to reduce the

number of free parameters we must estimate. First, we suppose that the distribution

of the default cost, Φ(χ), is uniform over an interval [Fmin, F
max] su�ciently wide to

include all the �scal scenarios we consider. Then, using equations (31)-(32), the default

rate can be written as

ψt = ψ + θ (Ft − F ) . (36)

where θ ≡ η/ (Fmax − Fmin) equals the arrival rate η of a rollover crisis times the density

1/ (Fmax − Fmin) of the uniform distribution Φ, and ψ is an intercept term associated

with the long-run steady state �scal pressure F . Hence the default arrival rate has two

parameters to estimate: its intercept, ψ, and its slope, θ.

48In Online Appendix D, we show that this �exibility in the timing and allocation of purchases
substantially enhanced the impact of the PEPP announcement.

49Note that our simulation scenarios treat the PEPP envelope as a limit on the total face value of
purchases. In reality, it limited the total market value of purchases. Assuming a limit on the face
value instead simpli�es our calculations, since it allows us to avoid a �xed point loop in bond prices
and therefore to obtain an a�ne solution for yields.
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Second, we assume that the impact of preferred-habitat demand shocks across matu-

rities τ is proportional both to g(τ), and to each country's long-run debt stock, setting

ς∗(τ) = H∗

H∗+H
g(τ) and ς(τ) = H

H∗+H
g(τ). We assume the demand shocks have the

same mean reversion coe�cient κh in the two countries, but may di�er in variance. We

allow for correlation across the countries' bond demand shocks, but assume these are

independent of the risk-free rate, de�ning the matrices K and Σ as follows:

K =

 κ 0 0

0 κh 0

0 0 κh

 , Σ =

 σ 0 0

0 υhσh χhυhσh

0 χhσh σh

 .
Here σh scales the overall volatility of preferred-habitat demand, while υh scales the

volatility of innovations to demand for Italian bonds relative to German bonds. The

correlation between the Italian and German preferred-habitat demand innovations is

controlled by χh ∈ [−1, 1].

Finally, regarding the slope of preferred-habitat demand with respect to yield, we

assume that it is also proportional to g(τ) over [τmin, τmax]:

τα (τ) =

αhς(τ), τmin ≤ τ ≤ τmax,

0, τ > τmax,
(37)

where τmin denotes one month, and τmax is the maximum maturity of government debt,

20 years.50 Likewise, for Core, we assume τα∗ (τ) = αhς
∗(τ) for τmin ≤ τ ≤ τmax, and

τα∗ (τ) = 0 at higher maturities.51

Parameters. This speci�cation leaves us with ten model parameters to estimate,

by minimizing the distance criterion de�ned in the previous subsection. Clearly, our

distance metric overidenti�es the ten parameters, as the number of moments (28) is

much larger. The estimated parameter values are displayed in Table 1.52 The esti-

50For values of τ less than one month, we de�ne α(τ) ≡ αh/τ
min. This is irrelevant for our numerical

results, since we perform no simulations with a time step �ner than one month. For our analytical
framework, it ensures that all integrals are bounded.

51Vayanos and Vila (2021) instead consider a speci�cation where the slope with respect to yield
is hump-shaped as a function of maturity: τα (τ) = τα exp(−δατ), where α and δα are constants.
Imposing this hump shape does not improve our model's �t to the data.

52Table 1 states the parameters in annualized terms. Table 6 in Online App. C.3 reports the
parameters in the actual numerical model, which is programmed with a monthly time unit, but is
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Table 1: Estimated parameters

Parameters Values
γ: Risk aversion 0.0108
ψ: Default rate intercept 86.2 bp
θ: Slope of default rate 2.05 bp / billion eur
r̂ + ϕ: Discount rate in �scal pressure 30.7%

κh: Mean reversion of PH shocks 0.00535

σh: Volatility of PH demand innovations 499 billion eur
υh: Relative volatility of IT PH demand 0.300
χh: Demand correlation parameter −0.558

αh: Slope parameter of PH demand 80.0 billion eur / p.p.

ζ: Remittance rule coe�cient 1

mated value of risk aversion γ is 0.0108. The long-run default rate is 86.2 bp per

annum. The slope of the default rate θ is 2.05 bp per billion euros of additional �scal

pressure compared to the steady state. The e�ective discount rate in the �scal pressure

integral equals 30.7% in annual terms.53 The scale parameter on annual innovations to

preferred-habitat (PH) demand is σh = 499 billion eur, with autoregressive coe�cient

κh = 0.00535 annually. Hence the standard deviation of annual innovations to PH

demand for German bonds is
√

(1 + χ2
h)σh = 572 billion eur implying that demand

for German bonds is extremely volatile and persistent, almost Brownian motion. PH

demand innovations are strongly negatively correlated between IT and DE, with pa-

rameter χh = −0.558, implying a correlation coe�cient of 2χh

1+χ2
h
= −0.84, and the scale

of �uctuations in Italian bond demand is only 30% of those in German demand, so the

standard deviation of innovations to Italian PH demand is υh
√

(1 + χ2
h)σh = 172 billion

eur. Since these �uctuations in Italian PH demand partially o�set the shocks to Ger-

man PH demand, they reduce the variance of the risk price λt, and thereby reduce the

term premium. Since
�
(ς(τ) + ς∗(τ))dτ = 1 by construction, an interpretation of the

PH demand coe�cient αh is that a 1pp across-the-board increase in yields causes an 80

billion euro rise in aggregate PH demand for IT and DE bonds. Finally, the remittance

coe�cient ζ ∈ [0, 1] is estimated to be one, i.e., the distance minimization routine hits

quantitatively equivalent.

53This discount rate implies that our �scal pressure measure (32) looks basically at a horizon of
three to four years. This is plausible in our context, as it broadly coincides with the political cycle.
Relatively high discount rates are not uncommon in the sovereign default literature; see for example
Arellano (2008).
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a corner solution at the upper bound we imposed on this parameter. Therefore, viewed

through the lens of our model, Peripheral yield data suggest that markets expect rather

generous dividend policies if a rollover crisis arrives.

5 Quantitative results

5.1 Long-run moments

Our estimated model achieves a good �t to many long-run patterns in the data, as

Fig. 4 shows. The �gure compares the model's ergodic distribution to sample �rst

and second moments over our full sample period, 1999-2022.54 The �t to the sample

average yield curves is remarkably good for both countries. Furthermore, the standard

deviation of yields in these long-run data is almost �at, independently of maturity.

The calibrated model reproduces the volatility of short rates by construction, but also

displays volatilities at long horizons that are similar to those at the short end, and are

higher for German yields than Italian yields, as in the data.

Identifying risk aversion. The upper row of the �gure also illustrates our yield

decomposition. The upper left panel decomposes mean German yields Ey∗t (τ) into

the expectations component EyEX∗
t (τ) and the term premium EyTP∗

t (τ). Under the

assumed short-term rate process, the ergodic mean of the expectations component is

constant across maturities at the level EyEX∗
t (τ) = r̄. The German term premium is

simply the yield minus the expectations term, in this case Ey∗t (τ) − r̄ = EyTP∗
t (τ).

The model slightly overpredicts the long-run average of the ten-year German term

premium, which is 1.25% in the sample, versus 1.42% in the simulation. Table 2 reports

quantitative details of the yield decomposition � and Sharpe ratios, which are closely

related � for ten-year bonds. Note that the long-run term premium can be written as

EyTP∗
t (τ) =

1

τ

� τ

0

[
A∗(s)⊤Eλt −

1

2
A∗(s)⊤ΣΣ⊤A∗(s)

]
ds, (38)

where

λt = γΣΣ⊤
� τmax

0

(Xt (τ)A(τ) +X∗
t (τ)A

∗(τ)) dτ. (39)

54The stars in Fig. 4 indicate the maturities that are included in the distance criterion to assess
levels and standard deviations of yields.
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Figure 4: German and Italian yields: long-run behavior
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Data source: German and Italian yields (annualized, basis points) on zero-coupon 1m, 1Y, 5Y,
and 10Y sovereign bonds from Datastream. German 1m yield is spliced to 1m OIS yield prior to
2011; Italian 1m yield unavailable.
Top row . Stars: average German (left) and Italian (right) sovereign yields, 1999-2022.
Lines: Decomposition of model-generated mean yields (solid), under the ergodic distribution,
into expectations component (dotted) plus term premium (dash-dotted), plus expected default
loss (dashed), plus credit risk premium.
Bottom row . Stars: standard deviations of German and Italian yields, 1999-2022.
Lines: model standard deviations of yields, under the ergodic distribution.

This says that the risk-price vector λt equals risk aversion γ times the variance matrix

of the factor innovations, ΣΣ⊤, times arbitrageurs' portfolio weighted by the bond price

factor loadings A(τ) and A∗(τ). Therefore, the term premium at a given maturity τ is

an increasing function of γ.55

But γ cannot be inferred from the German term premium alone, which also depends

on the variance of preferred habitat demand. Concretely, since the risk-free rate is in-

55While (38)-(39) may make the term premium appear linear in γ, this is not the case, because γ
also enters the ODEs (73) and (75) that determine A(τ) and A∗(τ), introducing nonlinearities.
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Table 2: Decomposing 10-year yields, spreads, and Sharpe ratios
DE 10Y yield IT-DE 10Y spread

variable value variable value
Yield/Spread: data† - 2.47% - 1.26%
Yield/Spread: model† Ey∗t 2.65% Eyt − Ey∗t 0.79%
Expected rates /default loss† EyEX∗

t = r̄ 1.23% EyDLt = δψ 0.22%
Term / credit premium† EyTP∗

t 1.42% EyCRt = Eξt 0.62%
Sharpe ratio: data 1999-2022 - 0.51 - 0.23
Sharpe ratio: model S∗

t (τ) 0.57 S∆
t (τ) 0.27

Numerator† A∗⊤Eλt 2.70% Eξt 0.62%

Denominator†
√
A∗⊤ΣΣ⊤A∗ 4.72% δ

√
ψ 2.32%

Note. The table reports the instantaneous Sharpe ratios S∗t (τ) and S∆t (τ), interpreting the time

unit as one year, for τ = 10 years, and related yield components. Quantities with a dagger (†) are
stated in annualized percentage points. Model notation is used to clarify the quantities shown,

but the function argument (τ) is omitted for brevity.

dependent of the preferred habitat factors, λt can be broken into two pieces: a term

γσ2
� τmax

0
(Xt (τ)A

r(τ) +X∗
t (τ)A

r,∗(τ)) dτ related to the short rate process, which is

observed, and a term γΣhΣ
⊤
h

� τmax

0

(
Xt (τ)A

h(τ) +X∗
t (τ)A

h,∗(τ)
)
dτ related to the pre-

ferred habitat process, which must be estimated.56 Either higher risk aversion or a more

volatile preferred habitat process will increase the term premium, so to distinguish be-

tween the two we include the second moments of yields in our estimation criterion. At

the short end, both the level and variability of German yields are tied down exactly by

the short-rate process, since the model has the property that limτ→0 y
∗
t (τ) = rt. For

longer bonds, matching the standard deviations of one-, �ve-, and ten-year German

and Italian yields provides su�cient targets to identify the �ve free parameters (σh,

κh, υh, χh, and αh) of the preferred habitat demand block (the good �t is seen in the

bottom row of Fig. 4).57 In summary, jointly matching these second moments and the

German term premia on longer bonds overidenti�es both arbitrageurs' risk aversion and

preferred habitat demand.

Identifying the long-run default probability. Next, matching Italian yields (or

the IT-DE spread) also depends on the probability of default. As Sec. 4.3 discussed,

long-run moments are calculated under the assumption that both �scal pressure and

56Here Σh refers to the 2× 2 diagonal block of Σ that relates to the preferred habitat process.

57In practice, σh is the most important of these parameters, because Σh is proportional to σh, so
the second component of λt scales quadratically in σh.
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hence the default rate equal their long-run values, Ft = F and ψt = ψ. Both of the

yield components that compensate for possible Italian default, yDLt (τ) and yCRt (τ), are

increasing in the default rate, so ψ is overidenti�ed by including mean one-, �ve-, and

ten-year Italian yields in the distance criterion. Overall, the �t is quite good, but

with just one free parameter to match these three targets, we see (top, right panel of

Fig. 4) that the model underpredicts 10-year yields and overpredicts one-year yields.

As long as ψ is small, Prop. 2 implies that the German and Italian term premia are

approximately equal, as we can verify by comparing the top two panels of Fig. 4. Thus,

�tting Italian yields is essentially the same problem as �tting IT-DE spreads, which are

likewise underpredicted at the ten-year horizon but overpredicted for one-year bonds

(see Fig. 5).

Importance of the credit risk premium. Having identi�ed risk aversion and the

long-run default rate, we can now break down the IT-DE spread into its components,

as shown in Fig. 4 and Table 2. The long-run expected default loss is EyDLt (τ) = δψ =

0.22% for all τ (the distance between the dash-dot and dashed lines in the top, right

panel of Fig. 4), based on an estimated long-run default probability of ψ = 0.86%

per annum and our calibrated haircut (δ = 0.25). The long-run sovereign credit risk

premium is EyCRt (τ) = Eξt = γψδ2
� τmax

0
EXt (s) ds = 0.62% (the distance between

the dashed and solid lines). This formula is analogous to (39): it says that the credit

risk premium equals risk aversion γ times the variance of the default loss, ψδ2, times

arbitrageurs' holdings of Italian debt,
� τmax

0
EXt (s) ds = 1058 billion euros. Taking

account of a �ve-basis point di�erence in the term premia on German and Italian

bonds, we obtain an overall sovereign spread of 0.79% on ten-year IT bonds, as Table

2 shows. More than 3/4 of this spread is accounted for by the credit risk premium.

To better understand the size of the credit risk premium relative to the expected

default loss, notice that their ratio is EyCRt (τ)/EyDLt (τ) = δγ
� τmax

0
EXt (s) ds. Interest-

ingly, the �nding that the credit risk premium greatly exceeds the expected default loss

does not actually depend on the default rate ψ, as both components are proportional

to ψ. On one hand, it depends on whether risk aversion γ is high in the context of the

amount of defaultable debt that arbitrageurs must hold,
� τmax

0
EXt (s) ds. As we have

already made clear, our risk aversion estimate is tied down independently by matching

German term premia. On the other hand, a lower haircut δ would make default less

risky, reducing the credit risk premium more than the expected default loss. But our

calibration of δ is already conservatively low, considering international evidence.
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Since risk aversion is inferred from term premia, it is also instructive to compare

the credit risk premium to the term premium. Assuming that the default rate ψ is low,

and using a �rst-order approximation at τ = 0, we have58

EyCRt (τ)

EyTP∗
t (τ)

≈
2ψδ2E

� τmax

0
Xt(s)ds

A(τ)⊤ΣΣ⊤E
� τmax

0
(Xt(s) +X∗

t (s))A(s)ds
. (40)

This formula points to two key ratios that link the inferred credit risk premium EyCRt (τ)

to the observed term premium EyTP∗
t (τ): (i) the ratio of Poisson jump risk to di�u-

sion risk, ψδ2/A(τ)⊤ΣΣ⊤A(τ), and (ii) the ratio of arbitrageurs' defaultable to total

bond-holdings, E
� τmax

0
Xt(s)ds /E

� τmax

0
(Xt(s) +X∗

t (s)) ds. While formula (40) can-

not be explicitly factored into these two ratios (since they are convoluted together in

the denominator), it helps explain why we conclude that EyCRt (τ) is large. First, our

model implies a larger credit risk premium when default risk is higher, compared with

the riskiness of the return to a non-defaulted bond. Second, it implies a larger credit

risk premium when defaultable bonds form a larger part of arbitrageurs' portfolio.

Sharpe ratios. Table 2 also documents the goodness of model �t by reporting

Sharpe ratios on ten-year German bonds and on default risk for ten-year Italian bonds

(see Online App. C.3.5 for details on computing these ratios in the data and in the

model). The lower-left panel of the table reports the ten-year German Sharpe ratio

in the ergodic distribution of our model (0.57) and in the data (0.51).59 This Sharpe

ratio can be computed as S∗
t (τ) ≡

A∗(τ)⊤Eλt√
A∗(τ)⊤ΣΣ⊤A∗(τ)

. While this ratio is not a targeted

moment in our estimation routine, its numerator and denominator bear a close ana-

lytical relation to the term premium and to second moments. Concretely, the Sharpe

numerator A∗(τ)⊤Eλt is the quantity that is averaged across maturities in the �rst term

of the term premium formula (38). The Sharpe denominator is the standard deviation

of innovations to the price of a bond with maturity τ . Hence the model's good �t to

the term premium and to the standard deviation of yields helps explain why it achieves

a good �t to this Sharpe ratio as well.

Next, Table 2 displays the Sharpe ratio of the Italian-German spread, given by

58To derive this formula, note that At(0) = A∗
t (0) = 0⃗. Therefore, to a �rst-order approximation at

τ = 0, (18) implies yTP∗
t (τ) ≈ 1

2A
∗
t (τ)

⊤λt, as can be veri�ed in Table 2. In a long-run situation with

low ψ, Prop. 2 applies, and therefore Eλt ≈ γΣΣ⊤E
� τmax

0
(Xt(s) +X∗

t (s))A(s)ds.

59The Sharpe ratios reported in the table are scaled for consistency with a time unit of one year.
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Figure 5: IT-DE spreads: long-run behavior
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Data source: German and Italian yields (annualized, basis points) on zero-coupon 1Y, 5Y, and
10Y sovereign bonds from Datastream.
Stars: average Italian-German sovereign spreads, 1999-2022.
Lines: Decomposition of model-generated mean spreads (solid), under the ergodic distribution,
into expectations component (dotted) plus term premium (dash-dotted), plus expected default
loss (dashed), plus credit risk premium.

S∆
t (τ) ≡ Eξt

δ
√
ψ
=γδ

√
ψE

� τmax

0
Xt(s)ds. Again, this ratio is untargeted, so its good

�t (0.27 in the model versus 0.23 in the data) provides additional support for our

calibration of these parameters, related to the cost of bearing default risk. Note that

the Sharpe numerator equals the credit risk premium, on average under the ergodic

distribution: EyCRt (τ) = Eξt. Therefore our conclusion that the credit risk premium is

large is not driven by an unreasonably high Sharpe ratio for default risk � quite the

contrary. The denominator of this Sharpe ratio is the standard deviation of the default

loss per unit of bond holdings. The fact that default is a very costly event when it

occurs (even though it occurs rarely) means that this denominator leads to a rather

low Sharpe ratio, even though the numerator is quite large.

Term structure of the sovereign spread. While most aspects of Fig. 4 �t

well, the IT-DE spread displays one key shortcoming of the model. By Prop. 3, the

model implies that the long-run means EyDLt (τ) and EyCRt (τ) are both independent of

maturity, but the sovereign spread increases with τ on average over the sample period.

Fig. 5 zooms in on the spread to highlight this discrepancy, decomposing it into the four

components of Prop. 1. A plausible explanation is that our analytical solution requires

the default probability ψt to be a deterministic function of time, while in reality markets
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Table 3: Variance decomposition of yields
One-year yields Ten-year yields
DE IT DE IT

Standard deviation (data) 180 170 192 151
Standard deviation (model) 174 175 186 160
Short-rate contribution 99.3% 94.2% 46.4% 60.7%
PH demand contribution 0.7% 5.8% 53.6% 39.3%

Top two lines: long-run standard deviations of yields, in basis points at annualized rates, in the

data (1999-2022) and in the model.

Bottom two lines: long-run variance decomposition of yields, showing contribution of risk-free

rate shocks rt and preferred-habitat demand shocks εht and εh∗t .

likely perceive ψt as a stochastic process. This could imply greater uncertainty about

default in the distant future, making the credit risk premium increase with τ . Solving a

model with a stochastic default probability is an interesting topic for future work, but

we expect it will require a fully numerical solution.

Variance decomposition. Finally, Table 3 further dissects the model's behavior

by presenting a variance decomposition for the ergodic distribution of yields. The �rst

two rows report the standard deviations of the model and the data for one- and ten-

year yields. As discussed above, the model matches the data well in this respect. In

particular, it reproduces the lower volatility of long-term Italian yields, despite their

defaultable nature. The model attributes this to the lower volatility of their PH de-

mand shocks. The third and fourth rows of the table decompose the volatility into the

contributions of the short rate and of PH demand. While short-term yields are basi-

cally driven by shocks to the short-term interest rate, long-term yields also �uctuate in

response to PH demand shocks, especially in the case of Germany, where these shocks

are estimated to be larger.

5.2 The PEPP announcement

The large long-run credit risk premium that we �nd on peripheral euro area bonds

suggests that changes in net bond supply could be a powerful driver of yields. Thus,

our model may have potential to explain the shifts in euro area yields associated with

the anticipated �scal response to the pandemic outbreak, and the subsequent PEPP

announcement. In standard (no default) models of risk-averse arbitrage, these changes

in net supply would steepen or �atten yields (respectively) via changes in term premia.
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But here their impact is reinforced by several default-related channels. First, a reduction

in the net supply of defaultable bonds St(τ) shrinks the credit risk premium yCRt (τ).

This e�ect operates even if the default probability is exogenous. But with endogenous

default, purchases also increase future redemptions of central bank-held Italian bonds,

fCBt+s (0), and hence reduce the default probability (both at t and at future times t+ s).

This lowers the expected default loss yDLt (τ) and also reinforces the fall in the credit

risk premium.

Identifying the default probability function. The extent and time-pro�le of

these e�ects in our model depends on how de�cits and bond redemptions aggregate

into �scal pressure on the government, and how strongly this pressure a�ects its de-

fault probability. That is, they depend on several parameters related to default: the

passthrough of revenue from bond redemptions, ζ, the government's discount rate in

its repayment decision, r̂+ ϕ, and the marginal impact of �scal pressure on the default

rate, θ. These parameters were not mentioned in Sec. 5.1, since the ergodic moments re-

ported there assumed constant �scal conditions, implying constant �scal pressure and a

constant default rate ψt = ψ. These three parameters are identi�ed by including in our

estimation criterion the model's �t to the changes in German and Italian yields at the

time of the PEPP announcement, at one-month and one-, �ve-, ten-, and twenty-year

maturities.

Impacts on announcement. The results of our benchmark PEPP simulation are

shown in Fig. 6, where stars in the top panels indicate the observed change in yields

between March 18 (pre-announcement) and March 20, 2020 (post-announcement).60

The blue stars in the top left panel show that the PEPP announcement had a small,

non-monotonic impact on German yields, which rose for one-year bonds and fell at

�ve- to twenty-year maturities. In contrast, Italian yields fell dramatically (top right

panel, red stars), with a hump-shaped decline that had its largest impact, of 86 bp, on

�ve-year bonds. Hence, across all maturities, the announcement was associated with a

large decrease in average eurozone yields, and a sharp drop in the IT-DE spread.

This simulation is based on the parameter estimates in Table 1, and on the purchase

scenario (post-PEPP) illustrated in Fig. 3. The overall scale of the shift in Italian yields

is matched by construction, determining the elasticity θ, but the close �t to the shapes

of the shifts of both countries' yields curves suggests that the model is consistent with

60We take the change from March 18 to 20 as our measure of the impact of the PEPP announcement,
because yields were still volatile across Europe on the 19th, but settled down from the 20th onwards.
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Figure 6: E�ects of PEPP announcement: baseline scenario (ζ = 1).
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Data source: German and Italian yields (annualized, basis points) on zero-coupon 1m, 1Y, 5Y,
10Y, and 20Y sovereign bonds from Datastream.
Top row . Stars: Shift in German (left) and Italian (right) yields, 18 to 20 March, 2020.
Lines: Model-generated shift in yields upon PEPP announcement (solid), decomposed into expec-
tations component (dotted) plus term premium (dash-dotted), plus expected default loss (dashed),
plus credit risk premium.
Bottom row . Model-generated impulse response of 1m, 1Y, 5Y, 10Y and 20Y yields in response
to PEPP announcement.

the underlying mechanisms at work. The estimated model allows us to decompose the

mechanisms behind these shifts. The model predicts a small decline in the German term

premium in response to the PEPP announcement, of roughly 10 bp for ten-year bonds

and 11 bp for 20-year bonds.61 Consistently with Prop. 2, the inferred e�ect on the

Italian term premium is similar. However, the Italian sovereign spread declines sharply

(e.g., by 62 bp at a ten-year horizon), �rst of all because the increased absorption of

61Since the model treats the riskless short rate as an exogenous factor, changing the path of purchases
has no impact on the expectations component yEXt (τ).
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credit risk makes the market more willing to hold part of this risk. Moreover, the

PEPP announcement reduces the default probability substantially, as the expected

default loss component reveals, with a maximum impact of 17 bp on Italian bonds of

two years' maturity or less. The reduction in the default probability in turn reinforces

the compression in credit risk premia. Thus, the model suggests that the extraction

of defaultable bonds from the market, together with the resulting reduction in their

default risk, jointly caused a large decrease in the credit risk premium yCRt (τ). At a

ten-year horizon, the 50 bp decline in yCRt (τ) accounts for 81% of the model-predicted

decline in the sovereign spread.

Italian yields decline at the time of the announcement across all maturities, but the

reduction is strongest for bonds of intermediate duration, which will be maturing when

cumulative net purchases are still large. In contrast, one-month bonds mature before

many purchases have taken place. Thus, the large shift in one-month yields might seem

surprising, but it re�ects the forward-looking nature of the default decision: anticipated

purchases lower expected �scal pressure over many future periods, reducing the gov-

ernment's default incentives immediately. This is re�ected even at the shortest end of

the yield curve. At the opposite extreme, for 20-year bonds, most net redemptions will

have occurred, and hence yields will be normalized again, by the time the bonds ma-

ture. Hence forward-looking behavior reduces the shift in longer yields: the anticipated

future return to normality limits the change in the longest yields on impact.

Persistent e�ects of PEPP. Beyond its powerful e�ect at announcement, the

model also predicts that PEPP's impact should persist over time. The bottom panels

of Fig. 6 illustrate the impulse responses of yields to the announcement, for selected

maturities, assuming that the purchase program unfolds as expected under our baseline

scenario. The small decrease in German yields (left panel) mostly a�ects long bonds,

and decays smoothly. The much larger reduction in Italian yields (right panel) is very

persistent, but di�ers across durations. The shortest yields fall steadily over the course

of 2020, because the quantity of short bonds held increases over that period, accumu-

lating new purchases with bonds purchased earlier at slightly greater maturity. The

maximal impact on short yields, of over 90 basis points, occurs just as gross purchases

cease. From this time onwards, the whole portfolio gradually matures, causing the

declines in 20- and 10-year yields to fade away smoothly over time. The decrease in

20-year yields from 2021 onwards (i.e., after the end of the net purchase phase envi-

sioned in the March 2020 announcement) is due only to arbitrage across durations, not
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Figure 7: E�ects of PEPP announcement: low-remittances scenario (ζ = 0).
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Data source: German and Italian yields (annualized, basis points) on zero-coupon 1m, 1Y, 5Y,
10Y, and 20Y sovereign bonds from Datastream.
Stars: Shift in German (left) and Italian (right) yields, 18 to 20 March, 2020.
Lines: Model-generated shift in yields upon PEPP announcement (solid), decomposed into expec-
tations component (dotted) plus term premium (dash-dotted), plus expected default loss (dashed),
plus credit risk premium.

because the program still holds any bonds with a 20-year residual maturity. As the

average maturity of the PEPP portfolio shortens, its impact on long yields fades away,

followed by its impact on short yields. The �nal e�ects of the program disappear as

the last bonds mature, 240 months after the end of gross purchases.

The low-remittances scenario. Our baseline calibration includes an estimated

coe�cient ζ = 1 in the remittance rule (30). While the yield data strongly favor that

parameterization, it is instructive to consider alternative values of ζ, which governs the

impact of asset purchases on the Peripheral default probability. For clarity we consider

the simple, polar-opposite case ζ = 0, representing a scenario in which the central

bank would not provide any income support during a rollover crisis (over and above

net transfers in the amount −Γ̄). This case is also interesting since it shuts down any

impact of asset purchases on default risk, thereby quantifying the importance of the

endogenous default channel in our benchmark results.

Fig. 7 displays the results in this case. The �t to the Italian yield curve movement

worsens relative to the baseline calibration, as the expected default loss does not change

48



and the impact on the credit risk premium is reduced. Nonetheless, the overall response

is still large, and qualitatively similar to the benchmark speci�cation, except at the very

shortest end. The near-zero impact of the announcement at the short end helps explain

why our estimation strongly rejects the ζ = 0 speci�cation (or any low ζ). As it seems

unlikely that central banks would fail to provide any income support to their treasuries

during a rollover crisis, we can view this scenario as a lower bound on the impact of

large-scale asset purchases in the euro area. It shows that credit risk extraction remains

a relevant driver of yields on defaultable bonds even if purchases have no e�ect on the

default probability itself.

5.3 Robustness

Our results indicate that the overall compensation for peripheral default risk in the

euro area context is driven primarily by a credit risk premium which is substantially

larger than the expected loss due to default, and also reacts more to Eurosystem asset

purchases. Table 4 explores the robustness of this conclusion to alternative parameter-

izations. The third column reports the credit risk premium as a fraction of the total

compensation for default risk, EyCRt (τ) /E
(
yCRt (τ) + yDLt (τ)

)
, for bonds of maturity

τ equal to 10 years, under the ergodic distribution. The fourth column reports the

contribution of the credit risk premium to the change in the compensation for default

risk induced by the announcement of PEPP, ∆yCRt (τ) /
(
∆yCRt (τ) + ∆yDLt (τ)

)
, in our

model's time-varying solution conditional on the �scal conditions of March 2020.

The main message from the table is that our key result is remarkably robust. Under

most parameterizations considered, the credit risk premium accounts for roughly three-

quarters of the total compensation for default risk, in levels, in the model's ergodic

distribution. The credit risk premium is even more important for the e�ects of the

PEPP announcement, with a contribution over 80% in those same parameterizations.

Note also that if PEPP has no endogenous impact on the default probability (the ζ = 0

case), then the contribution of the credit risk premium is 100%, by construction.

The table also identi�es extreme calibrations for which our main result disappears,

in the sense that the contribution of the credit risk premium decreases relative to that

of the expected default loss until the two are roughly balanced. Reducing the risk

aversion coe�cient γ to 1/3 of its baseline value implies a balanced (50%) contribution

of the credit risk premium in the long run, and reducing it to 1/6 of its baseline cali-
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Table 4: Robustness
Model Credit risk prem. Mean Standard Sharpe PEPP

�ta contributionb yieldsc deviationc ratio impactc

Calibration Long-run PEPP DE IT DE IT DE IT-DE IT

Data - - - 247 373 192 151 0.51 0.23 -71

Benchmark* 0.548 0.74 0.81 265 343 186 160 0.57 0.27 -71

Parameters calibrated directly from observables

κ× 1.25 1.063 0.74 0.81 252 331 164 137 0.54 0.27 -70

σ × 1.25 3.306 0.74 0.81 336 411 256 222 0.69 0.26 -73

δ = 0.1 2.854 0.54 0.68 268 286 184 179 0.59 0.11 -24

δ = 0.05 3.817 0.37 0.52 268 275 184 183 0.59 0.054 -16

Parameters estimated by minimizing the distance criterion

γ × 1.25 1.201 0.78 0.84 299 389 213 173 0.70 0.33 -83

γ ÷ 3 5.448 0.50 0.63 170 213 139 135 0.20 0.092 -35

γ ÷ 6 8.356 0.33 0.47 145 177 134 133 0.10 0.046 -23

ψ × 1.25 0.663 0.74 0.82 264 362 187 156 0.57 0.30 -71

θ × 1.25 0.633 0.74 0.81 265 343 186 160 0.57 0.27 -84

(r̂ + ϕ)× 1.25 0.593 0.74 0.82 265 343 186 160 0.57 0.27 -62

σh × 1.25 0.724 0.74 0.81 268 345 217 178 0.58 0.27 -73

υh × 1.5 0.651 0.74 0.81 263 343 172 154 0.57 0.27 -77

κh × 1.5 0.603 0.74 0.81 265 343 168 148 0.57 0.27 -71

χh × 1.5 0.576 0.74 0.81 265 342 192 149 0.57 0.27 -72

αh × 1.5 0.653 0.73 0.80 253 328 180 152 0.53 0.25 -64

ζ = 0 1.516 0.74 1.00 265 343 186 160 0.57 0.27 -40

Notes. *The benchmark calibration is described in Table 1. The following rows each describe the
e�ect of changing one parameter by the stated amount, relative to its benchmark value.
a �Model �t� refers to the sum of squared deviations of the statistics, expressed in percentage
points, listed in the bullet points in Sec. 4.3.
b �Credit risk contribution� means the credit risk premium as a fraction of the total compensation
for default risk at 10-year maturity, either in the long run or (in di�erences) in the e�ects of the
PEPP announcement.
cAnnual yields on 10-year bonds, expressed in basis points.

bration implies that the two components of default risk compensation respond roughly

equally to the PEPP announcement. Intuitively, it takes an extremely low degree of

risk aversion to make the credit risk premium as small as the expected default loss.

Likewise, haircuts δ as low as 0.1 and 0.05 reduce the contribution of the credit

risk premium to slightly more than one-half in the long run, and in the impact of

the PEPP announcement, respectively. This re�ects the fact that, as shown in Sec. 2,

expected default losses and credit risk premia are proportional to δ and δ2, respectively,
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so reducing the haircut lowers the latter more quickly than it does the former.

However, these low-risk-aversion and low-haircut calibrations are empirically im-

plausible, notably worsening model �t (see the second column of the table). By shrink-

ing the credit risk premium, low γ and low δ both decrease the level of Italian yields and

their responsiveness to PEPP; in addition, low γ shrinks the term premium, reducing

the slope of the yield curve. Hence, in the �fth and sixth columns of the table, we see

that the low-γ and low-δ calibrations imply much lower average yields than in the data,

especially on Italian bonds (from 177 to 286 bp, vs 373 bp in the data, at a ten-year

horizon). They also predict a far smaller reaction of Italian 10-year yields to the PEPP

announcement (from 16 to 35 bp) than the observed one (71 bp �see last column).

In sum, while some parameter con�gurations can make the credit risk premium less

relevant, such calibrations considerably worsen the model's ability to explain the level,

slope, and responsiveness of yields, both over the full sample and in the PEPP episode.

5.4 Understanding the e�ects of net bond supply

Next, we look in more detail at how policies that shift net bond demand transmit to the

default probability and yields. It is helpful here to delve deeper by comparing the e�ects

of the PEPP announcement to those of the pandemic outbreak. The transmission of the

two shocks is similar but not identical, since a change in de�cits a�ects �scal pressure

directly, while a change in purchases a�ects �scal pressure only through remittances of

central bank pro�ts.

Transmission channels of �scal pressure. Fig. 8 illustrates how the �scal con-

ditions associated with the pandemic, and the purchases announced under the PEPP,

feed through to �scal pressure and the default rate and hence to yields. The impact

of the pandemic outbreak � that is, the change in model quantities when the pre-

pandemic forecasts are replaced by the post-pandemic, pre-PEPP forecasts � is shown

by the green dashed lines. The solid black line shows the joint impact of the pandemic

and the PEPP announcement, meaning the change in model quantities when the pre-

pandemic forecasts are replaced by the post-PEPP forecasts. The �rst two panels show

the changes in the net supply of IT sovereign debt (gross supply minus purchases) and

in the �scal de�cit dt. These are simply di�erences in model inputs between the pre-

pandemic, pre-PEPP, and post-PEPP forecasts. The third panel shows the monthly

bond redemptions ft(0) implied by the maturation of the simulated portfolio, net of

51



Figure 8: Changes in �scal variables and default rate following pandemic and PEPP
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Green dashed lines: Changes in anticipated monthly paths of Italian �scal variables and default
probability in response to pandemic outbreak. Black solid lines: changes in anticipated monthly
paths due to cumulative e�ect of pandemic and PEPP announcement.
Top row : Changes in (i) sovereign debt, net of Eurosystem purchases; (ii) monthly �scal de�cits
dt; (iii) monthly bond redemptions, net of remittances from the Eurosystem to the government.
Middle row : Changes in (i) net �scal �ows; (ii) �scal pressure Ft; (iii) Annual default rate ψt.
Bottom row : Changes in (i) 10-year expected default loss yDLt (τ); (ii) default risk price ξt; (iii)
10-year credit risk premium yCRt (τ).

the remittances ζfCBt (0) to be paid conditional on a rollover crisis arriving. For this

variable, the green dashed line shows increased payments by the government to redeem

the pandemic-related debt, while the black line shows that in the �rst few years af-

ter the PEPP announcement (roughly 2020-2023), increased central bank remittances

outweigh the costs of increased debt redemptions.

The second row of Fig. 8 shows the change in the net monthly �scal �ows dt +

ft(0) − ζfCBt (0), and the changes in �scal pressure Ft and the default probability ψt.

Note that since �scal pressure is a forward-looking integral of net �scal �ows, it jumps

up immediately when the pandemic arrives, and then shifts partway down again when

PEPP is announced. Since the default probability is linearly related to �scal pressure,

the shifts in ψt are proportional to those in Ft. The lower-left panel shows the changes
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Table 5: Model-implied Sharpe ratios, conditional on events of Feb.-Mar. 2020
DE 10Y yield IT-DE 10Y spread

Sharpe ratio
Pre-pandemic 0.399 0.362
Pre-PEPP 0.394 0.521
Post-PEPP 0.407 0.489
Sharpe numerator† A∗

t (τ)
⊤λt ξt

Pre-pandemic 1.93% 1.22%
Pre-PEPP 1.90% 2.58%
Post-PEPP 1.96% 2.21%

Sharpe denominator†
√
A∗
t (τ)

⊤ΣΣ⊤A∗
t (τ) δ

√
ψt

Pre-pandemic 4.82% 3.37%
Pre-PEPP 4.83% 4.96%
Post-PEPP 4.83% 4.53%

Note. The table reports the model-implied instantaneous Sharpe ratios S∗t (τ) and S∆t (τ), inter-
preting the time unit as one year, for t = March 2020 and τ = 10 years, conditional on the

pre-pandemic, pre-PEPP , and post-PEPP information sets. Quantities with a dagger (†) are

stated in annualized percentage points. Model notation is used to clarify the quantities shown.

in the expected default loss yDLt (τ) on 10-year bonds. Since yDLt (τ) is a forward-looking

integral over ψt (in this case, looking forward over the next ten years), it also jumps up

on impact but is even smoother and more forward-looking than Ft.
62

The last two panels in Fig 8 show the changes in the default risk price ξt, and the

credit risk premium on 10-year bonds, yCRt (τ). The time pro�le of ξt resembles that of

ψt, to which it is closely related, by (13). It also increases with arbitrageurs' holdings of

IT bonds, which rise gradually following the pandemic outbreak (not shown), but are

then partially reversed by the PEPP announcement. Since yCRt (τ) is a forward-looking

integral over ξt, the shift in y
CR
t (τ) resembles the shift in yDLt (τ), but is substantially

larger, given the level of risk aversion that we infer from German term premia.

Sharpe ratios. These large variations in the default probability and its risk pre-

mium make it interesting to ask how Sharpe ratios changed with the pandemic outbreak

and the PEPP announcement. Table 5 documents the model-implied Sharpe numer-

62The forecasts we have used as model inputs predict lower Italian de�cits after 2026 in the pre-PEPP
forecast than in the pre-pandemic forecast. This eventually feeds into a reduced Italian default rate in
the decade of the 2030s. This explains why the expected default loss yDLt (τ) on 10-year bonds declines
from 2027 onwards under the post-outbreak forecast (yDLt (τ) is proportional to the 10-year forward
average of the default rate). In contrast, the credit risk premium yCRt (τ) does not decrease over the
years shown in Fig. 8, since it also depends on arbitrageurs' holdings, which increase persistently.
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Figure 9: Impact of the pandemic outbreak: German and Italian yields, Feb.-Mar. 2020
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Data source: German and Italian yields (annualized, basis points) on zero-coupon 1m, 1Y, 5Y,
10Y, and 20Y sovereign bonds from Datastream.
Stars: Shift in weekly average German yields (left) and Italian yields (right) from week of 13-19
February 2020 to week of 12-18 March 2020.
Lines: Model-generated change in yields in response to revised �scal expectations associated with
the pandemic (solid), decomposed into expectations component (dotted), plus term premium
(dash-dotted), plus expected default loss (dashed), plus credit risk premium.

ators, denominators, and ratios immediately before the pandemic, after the outbreak

but before PEPP, and immediately after the PEPP announcement. Already, before the

pandemic, the Italian default rate had climbed from its long-run value of ψ = 0.86%

annually to ψt ≈ 2%, leading to a Sharpe ratio of 0.362 on default risk. The rise in

debt and de�cits due to the pandemic immediately doubled the default rate to roughly

ψt ≈ 4%, which was partially o�set by the PEPP announcement, which brought the

rate back down to ψt = 3.7%. This is re�ected in the strong increase in the correspond-

ing Sharpe ratio, to 0.521, which then fell back to 0.489 after the PEPP announcement,

as seen in Table 5. While these movements in the annual Sharpe ratio are large, they

never reach implausible levels.63

Impact of the pandemic outbreak. Finally, Fig. 9 illustrates the model's �t to

the yield curve movements following the pandemic outbreak. The �gure compares the

model-generated shift in yields to the di�erence between the average yields observed

63For comparison, using data on the S&P 500 index for 1960-2022 we calculate a Sharpe ratio of
0.49. See https://shillerdata.com.
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over the week of 13-19 February 2020, and the average over the week of 12-18 March

2020 (which is exactly four weeks later, and precedes the announcement of the PEPP).

As these observations are not used in the estimation, this exercise serves as a useful

out-of-sample test. In the model, the pandemic outbreak is represented by the shift in

expectations from the pre-pandemic to the pre-PEPP forecasts. Hence it incorporates

the increase in debt and de�cits due to the pandemic, partially o�set by the ¿120

billion expansion of the APP envelope announced on March 12, 2020. In addition, it

incorporates a 22 bp decrease in the short rate factor rt, which is the observed change

in German one-month yields between 13-19 February and 12-18 March, 2020.

The right panel of the �gure shows that the pandemic shock generates a large

upward shift in Italian yields in our model (red curves), of the same order of magnitude

as the shift observed in bond markets from February to March 2020 (red stars). The

model somewhat overpredicts the market reaction for the shortest Italian bonds, and

the longest German bonds. The 20 bp shift in the expected default loss component and

the 100 bp shift in the credit risk premium, for ten-year Italian bonds, correspond to

the jumps in these components that are shown as green dashed lines in the bottom row

of Fig. 8. The key conclusion from the �gure is that our model generates an upward

shift across all maturities of Italian yields, a movement that cannot be explained by a

standard model without default. As Fig. 8 makes clear, the forward-looking nature of

the endogenous default decision is crucial for this �nding. This upward shift re�ects

an increase in the expected default loss due to the deteriorating �scal scenario, but its

main driver is the substantially larger increase in the credit risk premium.

6 Conclusions

This paper proposes a micro-founded model of the term structure of sovereign interest

rates in a heterogeneous monetary union. We extend the Vayanos and Vila (2021)

a�ne term structure model to a two-country monetary union where one of the two

sovereign issuers (Periphery) faces default risk, due to the possibility of rollover crises.

In addition to the familiar duration risk extraction channel of asset purchase programs,

our model features a novel default risk extraction channel, whereby announcements of

central bank asset purchases reduce both the expected amount of defaultable bonds

the market must absorb and the sovereign default probability itself, thus reducing the

compensation risk-averse investors require to absorb default risk.
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Arbitrage across issuers in this multicountry structure helps us identify model pa-

rameters. We calibrate the model to data on German and Italian yields. Assuming that

German default risk is negligible, arbitrageurs' risk aversion can be identi�ed by �tting

the model to the German yield curve. Given risk aversion, �tting the sovereign spread

identi�es the long-run probability of default. We can then decompose the sovereign

spread into the part that represents the expected loss due to Italian default (under the

physical measure), and the part that represents a risk premium on sovereign credit risk.

Under our inferred parameters, and given the implied amount of Italian sovereign bonds

absorbed by arbitrageurs, we �nd that the credit risk premium accounts for roughly

three-quarters of the long-run sovereign spread.

This large credit risk premium implies that there is substantial scope for asset pur-

chases to reduce the mean and the variability of the sovereign spread through the default

risk extraction channel. We show that our model can explain the large shift in Italian

yields � across all maturities, including short ones � that occurred in response to the

PEPP announcement. At a ten-year maturity, roughly four-�fths of the resulting re-

duction in the sovereign spread is attributable to a decline in the credit risk premium.

Moreover, as we show in an appendix, the �exibility in the timing and cross-country

allocation of purchases permitted by the PEPP substantially enhanced its impact, com-

pared to the in�exible design of the earlier APP. Our model could be fruitfully applied

to further analyze di�erent designs for balance sheet expansions and reductions in the

context of a monetary union.
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Internet Appendix

A Appendix: Central bank accounting

The main text focuses on bond market equilibrium, without spelling out the broader

�nancial context, notably including the role of the central bank. Here, we provide

more context. Most importantly, we derive expressions for central bank pro�ts and use

them to explain why a remittance rule based on pro�ts would render our a�ne solution

method inapplicable.

Besides the arbitrageurs and preferred-habitat investors, �nancial market partici-

pants include commercial banks that can hold short-term riskless bonds and central

bank reserves (indeed, some arbitrageurs may be commercial banks). Arbitrage then

ensures that the short-term riskless rate (rt) equals the interest rate on reserves.

The balance sheet of the common central bank consists of sovereign bonds on the

assets side and bank reserves and capital on the liabilities side. We assume that the

central bank maintains separate accounts associated with each national government in

the monetary union, and determines seignorage transfers in relation to its holdings of

each country's bonds. This roughly corresponds to the case of the Eurosystem, in which

most bonds are held by the national central banks (NCBs) of the countries that issued

them, with only a small fraction of holdings subject to �risk sharing� across the NCBs.

In our model, the central bank's balance sheet a�ects bond market equilibrium in

two ways. First, central bank bond holdings reduce the net supply of bonds to be

absorbed by the private sector, (St(τ), S
∗
t (τ)). Second, under our assumed remittance

rule (30), redemptions of central bank-held bonds a�ect dividend payments to the

government and therefore the default probability, by (28). As an alternative to our

redemptions-based rule, one could consider a remittance rule based on central bank

pro�ts, which would be more consistent with actual practice. However, as the main

text mentioned, this would prevent us from obtaining an a�ne solution for bond yields,

which is central toour analysis. To understand this issue, we next show how to compute

central bank pro�ts in our framework. We pay particular attention to ECB/Eurosystem

accounting principles for valuing securities held for monetary policy purposes (the only

central bank asset in our model), but we also show how one can simplify the algebra

by relaxing such principles.
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Central bank pro�ts: some additional notation. For each bond in the central

bank's portfolio at time t, let t̃ ∈ [t − τmax, t] denote the time when it was purchased

and τ̃ its residual maturity at the time of purchase. Residual maturity in the present

is τ = τ̃ − (t − t̃), i.e. residual maturity at the purchase date minus the time elapsed

since then. Let Pt̃(τ̃) denote the purchase price. For a zero-coupon bond, the yield-to-

maturity at the time of purchase, yt̃(τ̃), is determined by

Pt̃(τ̃) = e−yt̃(τ̃)τ̃ . (41)

Amortised cost accounting. All Eurosystem members (the ECB and the national

central banks) are required to value their monetary policy portfolios at amortised cost.

The value at amortised cost at time t of bond (τ̃ , t̃) is given by

Vt(τ̃ , t̃) = Pt̃(τ̃)e
yt̃(τ̃)(t−t̃). (42)

Therefore, the initial value of the bond equals its purchase price: Vt̃(τ̃ , t̃) = Pt̃(τ̃).

Thereafter, its value grows at the same rate as the bond's IRR, yt̃(τ̃), converging to its

face value at maturity: Vt̃+τ̃ (τ̃ , t̃) = Pt̃(τ̃)e
yt̃(τ̃)τ̃ = 1, where the second equality follows

from (41). In turn, the interest income from the bond at t is given by

It(τ̃ , t̃) = Vt(τ̃ , t̃)yt̃(τ̃), (43)

i.e. the bond's current value (at amortized cost) times its yield at the time of purchase.

Since the bond's value Vt(·) increases over time, its interest income does too.

Equation (43) shows how amortised cost accounting periodi�es the bond's total

income over the period in which it is held (to maturity) by the central bank. To see

this, and to simplify the algebra, without loss of generality, normalize the purchase

time to t̃ = 0, and let P0(τ̃) ≡ P (τ̃), y0(τ̃) ≡ y(τ̃), Vt(τ̃ , 0) = P (τ̃)ey(τ̃)t ≡ Vt(τ̃), and

It(τ̃ , 0) = Vt(τ̃)y(τ̃) ≡ It(τ̃). Then, integrating (43) over the holding period yields

� τ̃

0

It(τ̃)dt = y(τ̃)P (τ̃)

� τ̃

0

ey(τ̃)tdt = y(τ̃)P (τ̃)

[
1

y(τ̃)
ey(τ̃)t

]τ̃
0

= P (τ̃)
[
ey(τ̃)τ̃ − 1

]
= 1−P (τ̃),

where the last equality uses the fact that P (τ̃)ey(τ̃)τ̃ = 1. The last expression in the

above equation is precisely the total income on a zero-coupon bond: its face value

(which we normalize to one) minus its purchase price.
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Central bank pro�ts. Let fCBt (τ̃ , t̃) denote the central bank's holdings at time

t of bonds that were purchased at time t̃ with residual maturity τ̃ .64 Then the total

interest income from the bond portfolio at time t is

I tott =

� t

t−τmax

� τmax

0

It(τ̃ , t̃)f
CB
t (τ̃ , t̃)dτ̃dt̃. (44)

The central bank's pro�t �ow at time t is its total interest income minus interest

payments on reserves,

Πcb
t = I tott − rtDt, (45)

where Dt are central bank reserves and rt is the interest rate on reserves. Finally, the

law of motion of reserves is given by

Ḋt = rtDt +

� τmax

0

Pt(τ)ι
CB
t (τ)dτ + Γt − fCBt (0), (46)

i.e. reserves increase with interest payments on reserves, bond purchases (
�
Pt(τ)ι

CB
t (τ)dτ)

and dividend payments (Γt), and decrease with bond redemptions (fCBt (0)).

Pro�t-based remittance rules. As the main text discusses, remittance rules

based on central bank pro�ts are incompatible with our a�ne solution method. As

(28) in the paper shows, the default rate at any time t depends on the future streams of

government primary de�cits and total bond redemptions, which are both assumed to be

deterministic,65 and on the future stream of dividends paid to the Treasury, {Γt+s}s≥0.

Under pro�t-based dividend rules, this last term would depend on past and future bond

prices, thus making our a�ne solution inapplicable.

To see this in the simplest way possible, suppose the central bank pays o� its entire

accounting pro�t at all times: Γt+s = Πcb
t+s = I tott+s−rt+sDt+s for all s ≥ 0.66 The default

probability would then depend on the future streams of interest income and interest

64We do not need to include the current (time-t) residual maturity as an argument of the portfolio
distribution, as it is implied by the other arguments: τ = τ̃ − (t− t̃).

65As explained in the paper, we assume that the central bank commits to a certain path of future
bond purchases in face value terms (as opposed to market value terms), precisely so that we obtain
an a�ne solution for yields. Under this assumption, the future stream of central bank-held bond
redemptions is indeed deterministic and therefore does not depend on bond prices.

66In reality, Eurosystem NCBs do not typically pay all their accounting pro�ts to their national
treasuries, and instead retain some income to accumulate capital bu�ers. How much is retained varies
across NCBs, depending on the risks in their balance sheets and their risk provisioning methodologies.
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payments on reserves, which both depend on past and future (from the point of view

of time t) bond prices. Indeed, by (42)-(44), total interest income I tott equals

I tott =

� t

t−τmax

� τmax

0

Pt̃(τ̃)e
yt̃(τ̃)(t−t̃)yt̃(τ̃)f

CB
t (τ̃ , t̃)dτ̃dt̃, (47)

where yields depend on prices through yt̃(τ̃) = − log(Pt̃(τ̃))/τ̃ . Therefore, at any future

time t + s > t, interest income I tott+s would depend on the prices paid by the central

bank on all bonds held in its portfolio at that time. Regarding interest payments on

reserves, from equation (46) the stock of reserves at any future time t+ s is

Dt+s = e
� s
0 rt+jdjDt +

� s

0

e
� s
u rt+jdj

(� τmax

0

Pt+u(τ)ι
CB
t+u(τ)dτ + Γt+u − fCBt+u(0)

)
du,

Therefore, future reserves Dt+s and the interest payments on them, rt+sDt+s, depend on

future bond prices, both through prices paid in future purchases (
� τmax

0
Pt+u(τ)ι

CB
t+u(τ)dτ)

and through the pro�t-based dividend rule itself (Γt+u = Πcb
t+u).

Simplifying the algebra of central bank pro�ts. As mentioned before, the

total income earned on a zero-coupon bond, from purchase to redemption, is

1− Pt̃(τ̃), (48)

i.e. its face value minus the purchase price. While amortised cost accounting periodi�es

this income over the entire holding period, one could consider a simpler accounting

framework that only recognizes the bond's income upon redemption. One could then

aggregate (48) across all bonds maturing at t (those with residual maturity τ = 0) to

obtain a simpler expression for total bond income:

Î tott =

� τmax

0

(1− Pt̃(τ̃))f̃
CB
t (0, t̃)dt̃ = fCBt (0)−

� τmax

0

Pt̃(τ̃)f̃
CB
t (0, t̃)dt̃, (49)

where f̃CBt (0, t̃) is the mass of central bank-held bonds maturing at time t that were

purchased at t̃ (with residual maturity τ̃ = t − t̃) and fCBt (0) =
� τmax

0
f̃CBt (0, t̃)dt̃ is

total redemptions at t of central bank-held bonds. While far simpler than the expression

(44) for income under amortised-cost accounting, expression (49) still depends on bond

prices. Therefore, simplifying the accounting conventions for central bank pro�ts would

not eliminate the dependence of pro�ts on bond prices, which prevents us from obtaining
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an a�ne solution.

Central bank capital in a rollover crisis. As mentioned in the main text, our

assumed remittance rule implies that the central bank may, under some circumstances,

face a reduction in its capital. To see this formally, we can use equations (30) and (46)

to obtain the law of motion of central bank reserves in a rollover crisis:

Ḋt = rtDt +

�
Pt (τ) ι

CB
t (τ) dτ − Γ̄− (1− ζ) fCBt (0) . (50)

We can de�ne the national central bank's capital as

Kt ≡
� t

t−τmax

� τmax

0

Vt(τ̃ , t̃)f
CB
t (τ̃ , t̃)dτ̃dt̃−Dt,

Capital then evolves as follows,

K̇t =

� τmax

0

[
Vt(τ̃ , t̃)f

CB
t (τ̃ , t̃)− Vt−τmax(τ̃ , t̃)fCBt−τmax(τ̃ , t̃)

]
dτ̃dt̃

+

� t

t−τmax

� τmax

0

� (
∂Vt(τ̃ , t̃)

∂t
fCBt (τ̃ , t̃) + Vt(τ̃ , t̃)

∂fCBt (τ̃ , t̃)

∂t

)
dτ̃dt̃− Ḋt.

During a rollover crisis, equation (50) implies

K̇t =

� τmax

0

[
Vt(τ̃ , t̃)f

CB
t (τ̃ , t̃)− Vt−τmax(τ̃ , t̃)fCBt−τmax(τ̃ , t̃)

]
dτ̃dt̃

+

� t

t−τmax

� τmax

0

� (
∂Vt(τ̃ , t̃)

∂t
fCBt (τ̃ , t̃) + Vt(τ̃ , t̃)

∂fCBt (τ̃ , t̃)

∂t

)
dτ̃dt̃

− rtDt −
� τmax

0

Pt(τ)ι
CB
t (τ)dτ + Γ̄ + (1− ζ) fCBt (0) .

Thus, capital maydecrease during a crisis, potentially falling below zero. This will

depend on the maturity structure of central bank assets, the path of interest payments

on reserves, and the constant Γ̄. In particular, a su�ciently large capital retention term

Γ̄ can make the probability of a negative capital event arbitrarily small. In any case, as

Del Negro and Sims (2015) and Reis (2013) discuss, a central bank can operate with low

or even negative capital (within limits). Hence the small probability that the central

bank may at some time face negative capital is inessential for our analysis.
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B Model solution

B.1 Solving the one-factor model

For the one-factor model, we conjecture that there exist two pairs of deterministic func-

tions (At (τ) , Ct (τ)) and (A∗
t (τ) , C

∗
t (τ)) such that the price of bonds can be expressed

in log-a�ne form:

Pt (τ) = e−[At(τ)rt+Ct(τ)], P ∗
t (τ) = e−[A∗

t (τ)rt+C
∗
t (τ)]. (51)

Applying Itô's lemma, the time-t instantaneous return on an undefaulted bond of ma-

turity τ is

dPt (τ)

Pt (τ)
= µt (τ) dt− σAt (τ) dBt,

dP ∗
t (τ)

P ∗
t (τ)

= µ∗
t (τ) dt− σA∗

t (τ) dBt, (52)

where67

µt (τ) =

(
∂At
∂τ

− ∂At
∂t

)
rt +

(
∂Ct
∂τ

− ∂Ct
∂t

)
− At (τ)κ (r̄ − rt) +

1

2
σ2 [At (τ)]

2 , (53)

and

µ∗
t (τ) =

(
∂A∗

t

∂τ
− ∂A∗

t

∂t

)
rt +

(
∂C∗

t

∂τ
− ∂C∗

t

∂t

)
− A∗

t (τ)κ (r̄ − rt) +
1

2
σ2 [A∗

t (τ)]
2 . (54)

If we substitute bond returns (52) into the law of motion of wealth (6), we obtain

dWt =

[
Wtrt +

� ∞

0

(Xt (τ) (µt (τ)− rt) +X∗
t (τ) (µ

∗
t (τ)− rt)) dτ

]
dt

−
[� ∞

0

(Xt (τ)At(τ) +X∗
t (τ)A

∗
t (τ)) dτ

]
σdBt

−
[� ∞

0

Xt (τ) dτ

]
δdNt. (55)

Using (55) to evaluate the expectation and variance of dWt in (5), the arbitrageur´s

problem can be expressed as (9), with �rst-order conditions (10)-(11).
Since preferred habitat demand is assumed to be a�ne in yields, equations (14)-(15)

67Note that τ is a state with dynamics dτ = −dt, so Itô's lemma yields derivatives in τ as well as t.
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imply that the risk prices λt and ξt that appear in the �rst-order conditions must be
a�ne too. Hence, a solution requires λt = Λtrt + λ̄t and ξt = Ξtrt + ξ̄t, where

Λt ≡ − γσ2

� ∞

0

(
α (τ) [At (τ)]

2
+ α∗ (τ) [A∗

t (τ)]
2
)
dτ,

λ̄t ≡ γσ2

� ∞

0

[(
St (τ)− ht (τ)− α (τ)Ct (τ) + τα (τ) δ̂ψt

)
At (τ) + (S∗

t (τ)− h∗t (τ)− α∗ (τ)C∗
t (τ))A

∗
t (τ)

]
dτ,

Ξt ≡ − γψtδ
2

� ∞

0

α (τ)At (τ) dτ,

ξ̄t ≡ γψtδ
2

� ∞

0

(
St (τ)− ht (τ)− α (τ)Ct (τ) + τα (τ) δ̂ψt

)
dτ.

With this notation, if we substitute µt (τ) and µ
∗
t (τ) from (53)-(54) into (10)-(11), the

�rst-order conditions on the arbitrageurs' portfolio weights are:

0 = −
(
∂At
∂τ

− ∂At
∂t

)
rt −

(
∂Ct
∂τ

− ∂Ct
∂t

)
+ At (τ)κ (r̄ − rt)−

1

2
σ2 [At (τ)]

2 + rt

+ At (τ)
(
Λtrt + λ̄t

)
+ ψtδ +

(
Ξtrt + ξ̄t

)
,

and

0 = −
(
∂A∗

t

∂τ
− ∂A∗

t

∂t

)
rt −

(
∂C∗

t

∂τ
− ∂C∗

t

∂t

)
+ A∗

t (τ)κ (r̄ − rt)−
1

2
σ2 [A∗

t (τ)]
2 + rt

+ A∗
t (τ)

(
Λtrt + λ̄t

)
.

Separating the terms with and without r, we must have

0 = −∂At
∂τ

+
∂At
∂t

− At (τ)κ+ 1 + ΛtAt (τ) + Ξt, (56)

0 = −∂Ct
∂τ

+
∂Ct
∂t

+ At (τ)κr̄ −
1

2
σ2 [At (τ)]

2 + λ̄tAt (τ) + ψtδ + ξ̄t, (57)

0 = −∂A
∗
t

∂τ
+
∂A∗

t

∂t
− A∗

t (τ)κ+ 1 + ΛtA
∗
t (τ) , (58)

0 = −∂C
∗
t

∂τ
+
∂C∗

t

∂t
+ A∗

t (τ)κr̄ −
1

2
σ2 [A∗

t (τ)]
2 + λ̄tA

∗
t (τ) . (59)

This provides a system of PDEs to determine functions (At (τ) , Ct (τ)) and (A∗
t (τ) , C

∗
t (τ)),

verifying our guess that the bond price is an a�ne function of rt.
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B.2 Derivation of analytical results from Sec. 2.1

B.2.1 Proof of Prop. 1

We want to prove the decomposition: (1)

yt (τ) =
1

τ
Et

� τ

0

rt+sds︸ ︷︷ ︸
Expected rates yEX

t (τ)

+
1

τ
Et

� τ

0

[
At+s (τ − s)λt+s −

σ2

2
[At+s (τ − s)]2

]
ds︸ ︷︷ ︸

Term premium yTP
t (τ)

+
1

τ
Et

� τ

0

δψt+sds︸ ︷︷ ︸
Expected default loss yDL

t (τ)

+
1

τ
Et

� τ

0

ξt+sds︸ ︷︷ ︸
Credit risk premium yCR

t (τ)

.

We can compute each of the terms of the decomposition recursively. We illustrate it

in the case of the last term, the credit risk premium, but the proof is similar for the

others. Note that we can express the credit risk premium as

τyCRt (τ) = Et
� τ̂

0

ξt+sds+ Et
� τ

τ̂

ξt+sds = Et
� τ̂

0

ξt+sds+ (τ − τ̂)Et
[
yCRt+τ̂ (τ − τ̂)

]
.

This uses the fact that

Et
� τ

τ̂

ξt+sds = Et

(
Et+τ̂

� τ−̂τ

0

ξt+τ̂+sds

)
= (τ − τ̂)Et

[
yCRt+τ̂ (τ − τ̂)

]
.

Then, using the a�ne representation τyCRt (τ) =
[
ACRt (τ) rt + CCR

t (τ)
]
, we can write

ACRt (τ) rt + CCR
t (τ) = Et

� τ̂

0

ξt+sds+ Et
[
ACRt+τ̂ (τ − τ̂) rt+τ̂ + CCR

t+τ̂ (τ − τ̂)
]
.

If we take the derivative with respect to τ̂ , we get

0 = ξt+τ̂+Et
[
−
(
∂ACRt+τ̂
∂τ

−
∂ACRt+τ̂
∂t

)
rt+τ̂ + ACRt+τ̂ (τ − τ̂)κ (r̄ − rt+τ̂ )−

(
∂CCR

t+τ̂

∂τ
−
∂CCR

t+τ̂

∂t

)]
,

so we can then take the limit as τ̂ → 0 and separate terms:

0 = −∂A
CR
t

∂τ
+
∂ACRt
∂t

− κACRt (τ) + Ξt,

0 = −∂C
CR
t

∂τ
+
∂CCR

t

∂t
+ ACRt (τ)⊤ κr̄ + ξ̄t+τ̂ .
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We can derive similar recursive representations for the other components. The expected

future rates:

0 = −∂A
EX
t

∂τ
+
∂AEXt
∂t

− κAEXt (τ) + 1,

0 = −∂C
EX
t

∂τ
+
∂CEX

t

∂t
+ AEXt (τ)⊤ κr̄.

The term premium:

0 = −∂A
TP
t

∂τ
+
∂ATPt
∂t

− κATPt (τ) + ΛtAt (τ) ,

0 = −∂C
TP
t

∂τ
+
∂CTP

t

∂t
+ ATPt (τ)κr̄ − σ2

2
[At (τ)]

2 + At (τ) λ̄t.

And the expected default loss:

0 = −∂A
DL
t

∂τ
+
∂ADLt
∂t

− κADLt (τ) ,

0 = −∂C
DL
t

∂τ
+
∂CDL

t

∂t
+ ADLt (τ)⊤ κr̄ + ψtδ.

De�ning At (τ) ≡ ACRt (τ) + AEXt (τ) + ATPt (τ) + ADLt (τ) , and Ct (τ) ≡ CCR
t (τ) +

CEX
t (τ)+CTP

t (τ)+CDL
t (τ), it is straightforward to verify these four pairs of equations

sum up to the equations (56)-(57) that govern At(τ) and Ct(τ). Therefore solutions for

(56)-(57) sum up to a solution for At(τ) and Ct(τ).

B.2.2 Details of Props. 2-4

To derive the formulas on which Props. 2, 3, and 4 are based, we start with equations

(56)-(59) from App. B.1. In steady state, the system simpli�es to

0 = −∂A
∂τ

− A (τ)κ+ 1 + ΛA (τ) + Ξ. (60)

0 = −∂C
∂τ

+ A (τ)κr̄ − 1

2
σ2 [A (τ)]2 + λ̄A (τ) + ψδ + ξ̄. (61)

0 = −∂A
∗

∂τ
− A∗ (τ)κ+ 1 + ΛA∗ (τ) (62)

0 = −∂C
∗

∂τ
+ A∗ (τ)κr̄ − 1

2
σ2 [A∗ (τ)]2 + λ̄A∗ (τ) , (63)
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where we have suppressed the time index as functions are time-invariant. Di�erential

equations (60) and (62) can be solved as

A∗ (τ) =
1− e−κ̂τ

κ̂
, A (τ) =

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂

, (64)

where

κ̂ = κ− Λ = κ+ γσ2

� ∞

0

α (τ)

(
(1 + Ξ)

(
1− e−κ̂τ

)
κ̂

)2

+ α∗ (τ)

(
1− e−κ̂τ

κ̂

)2
 dτ.

Then, integrating equations (61) and (63), we get

C∗ (τ) =

� τ

0

[
A∗ (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A∗ (u)]2

]
du,

C (τ) =
(
ψδ + ξ̄

)
τ +

� τ

0

[
A (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (u)]2

]
du.

Next, we analyze the limit as maturity converges to zero:

lim
τ→0

yt (τ) =
(
ψδ + ξ̄

)
+ lim

τ→0

[
(1 + Ξ)

(
1− e−κ̂τ

)
κ̂

rt + A (τ)
(
κr̄ + λ̄

)
− 1

2
σ2 [A (τ)]2

]
= (1 + Ξ) rt +

(
ψδ + ξ̄

)
.

Here we have used L'Hôpital's rule to obtain

lim
τ→0

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂τ

= lim
τ→0

(1 + Ξ) κ̂e−κ̂τ

κ̂
= (1 + Ξ) ,

and the fact that A (0) = 0 to derive

lim
τ→0

� τ
0

[
A (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (u)]2

]
du

τ
= limτ→0A (τ)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (τ)]2 = 0.

B.3 Solving the model with demand risk

For the model extension with demand risk factors, we again conjecture deterministic

functions (At (τ) , Ct (τ)) and (A∗
t (τ) , C

∗
t (τ)), whereAt (τ) =

(
Art (τ) , A

h
t (τ) , A

h∗
t (τ)

)⊤
and A∗

t (τ) =
(
A∗r
t (τ) , A∗h

t (τ) , A∗h∗
t (τ)

)⊤
, such that bond prices can be expressed in
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log-a�ne form:

Pt (τ) = e−[At(τ)
⊤qt+Ct(τ)], P ∗

t (τ) = e−[A
∗
t (τ)

⊤qt+C∗
t (τ)]. (65)

Applying Itô's lemma, the time-t instantaneous return on an undefaulted bond of ma-

turity τ is

dPt (τ)

Pt (τ)
= µt (τ) dt− At (τ)

⊤ ΣdBt,
dP ∗

t (τ)

P ∗
t (τ)

= µ∗
t (τ) dt− A∗

t (τ)
⊤ΣdBt, (66)

where68

µt (τ) =

(
∂At
∂τ

− ∂At
∂t

)⊤

qt+

(
∂Ct
∂τ

− ∂Ct
∂t

)
−At (τ)⊤K (r̄E1 − qt)+

1

2
At (τ)

⊤ΣΣ⊤A (τ) ,

(67)

and

µ∗
t (τ) =

(
∂A∗

t

∂τ
− ∂A∗

t

∂t

)⊤

qt+

(
∂C∗

t

∂τ
− ∂C∗

t

∂t

)
−A∗

t (τ)
⊤K (r̄E1 − qt)+

1

2
A∗
t (τ)

⊤ΣΣ⊤A∗ (τ) .

(68)

The �rst-order conditions on the arbitrageurs' portfolio weights are

µt (τ) = rt + At (τ)
⊤ λt + ψtδ + ξt, (69)

µ∗
t (τ) = rt + A∗

t (τ)
⊤ λt, (70)

where

λt = γΣΣ⊤
� ∞

0

(Xt (τ)At(τ) +X∗
t (τ)A

∗
t (τ)) dτ (71)

and

ξt = γψtδ
2

� ∞

0

Xt (τ) dτ, (72)

where λt is a 3x1 vector and ξt is a scalar.
Since preferred habitat demand is assumed to be a�ne in qt, plugging the market

clearing conditions into (71)-(72) implies that λt = Λ⊤
t qt + λ̄t and ξt = Ξ⊤

t qt + ξ̄t must

68Note that τ is a state with dynamics dτ = −dt, so Itô's lemma yields derivatives in τ as well as t.
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also be a�ne functions, with the following coe�cients:

Λ⊤
t ≡ γΣΣ⊤

� ∞

0

(
ς (τ)At (τ) E⊤

2 − α (τ)At (τ)At (τ)
⊤
+ ς∗ (τ)A∗

t (τ) E⊤
3 − α∗ (τ)A∗

t (τ)A
∗
t (τ)

⊤
)
dτ,

λ̄t ≡ γΣΣ⊤
� ∞

0

[(
St (τ)− ht (τ)− α (τ)Ct (τ) + τα (τ) δ̂ψt

)
At (τ) + (S∗

t (τ)− h∗t (τ)− α∗ (τ)C∗
t (τ))A

∗
t (τ)

]
dτ,

Ξ⊤
t ≡ γψtδ

2

� ∞

0

[
ς (τ) E⊤

2 − α (τ)At (τ)
⊤
]
dτ,

ξ̄t ≡ γψtδ
2

� ∞

0

(
St (τ)− ht (τ)− α (τ)Ct (τ) + τα (τ) δ̂ψt

)
dτ,

where E2 = (0, 1, 0)⊤ and E3 = (0, 0, 1)⊤. Notice that Λt is a 3x3 matrix, λ̄t and Ξt are

3x1 vectors, and ξ̄t is a scalar. Using this notation, the �rst-order conditions become:

0 = −
(
∂At
∂τ

− ∂At
∂t

)⊤

qt −
(
∂Ct
∂τ

− ∂Ct
∂t

)
+ A (τ)⊤K (r̄E1 − qt)−

1

2
At (τ)

⊤ΣΣ⊤At (τ)

+ E⊤
1 qt + At (τ)

⊤ (Λ⊤
t qt + λ̄t

)
+ ψtδ +

(
Ξ⊤
t qt + ξ̄t

)
,

and

0 = −
(
∂A∗

t

∂τ
− ∂A∗

t

∂t

)⊤

qt −
(
∂C∗

t

∂τ
− ∂C∗

t

∂t

)
+ A∗

t (τ)
⊤K (r̄E1 − qt)−

1

2
A∗
t (τ)

⊤ ΣΣ⊤A∗
t (τ)

+ E⊤
1 qt + A∗

t (τ)
⊤ (Λ⊤

t qt + λ̄t
)
.

Transposing these equations and separating the terms with and without q, we must

have

0 = −∂At
∂τ

+
∂At
∂t

−K⊤At (τ) + ΛtAt (τ) + E1 + Ξt. (73)

0 = −∂Ct
∂τ

+
∂Ct
∂t

+At (τ)
⊤KE1r̄ +At (τ)

⊤ λ̄t −
1

2
At (τ)

⊤ΣΣ⊤At (τ) + ψtδ + ξ̄t. (74)

0 = −∂A
∗
t

∂τ
+
∂A∗

t

∂t
−K⊤A∗

t (τ) + ΛtA
∗
t (τ) + E1 (75)

0 = −∂C
∗
t

∂τ
+
∂C∗

t

∂t
+A∗

t (τ)
⊤KE1r̄ +A∗

t (τ)
⊤ λ̄t −

1

2
A∗
t (τ)

⊤ΣΣ⊤A∗
t (τ) . (76)

This system of PDEs su�ces to determine the functions (At (τ) , Ct (τ)) and (A∗
t (τ) , C

∗
t (τ)),

verifying our guess that the bond price is an a�ne function of qt.
69

69Equations (73) and (75) correspond to equation (36) of Vayanos and Vila (2021), while equations
(74) and (76) correspond to their (38).
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B.4 Model-generated moments

The yields for maturity τ in the periphery and core are

yt (τ) = τ−1
(
Art (τ) rt + Aht (τ) ε

h
t + Ah∗t (τ) εh∗t + Ct (τ)

)
,

y∗t (τ) = τ−1
(
A∗r
t (τ) rt + A∗h

t (τ) εht + A∗h∗
t (τ) εh∗t + C∗

t (τ)
)
.

Assuming that the demand risk factors are independent from the short-term rate, the

volatility of yields in the ergodic distribution is

√
Var (yt (τ)) =

√
Ar (τ)2 σ2

r

2κr
+ Ah (τ)2 σ2

ε

2κε
+ Ah∗ (τ)2 σ2

ε∗
2κε∗

+ 2Ah (τ)Ah∗ (τ)Cov
(
εht , ε

h∗
t

)
τ

,

√
Var (y∗t (τ)) =

√
A∗r (τ)2 σ2

r

2κr
+ A∗h (τ)2 σ2

ε

2κε
+ A∗h∗ (τ)2 σ2

ε∗
2κε∗

+ 2A∗h (τ)A∗h∗ (τ)Cov
(
εht , ε

h∗
t

)
τ

.

C Appendix: Computing the solution

C.1 Parameters

The parameters of our numerical model are reported in Table 6. The model is pro-

grammed with a monthly time unit (the units have been converted to annualized terms,

for clarity, in Table 1 of the main text). The monthly time unit is convenient because it

allows us to verify our results by running either a continuous-time method (App. C.2)

or a discrete-time method (App. C.3.2), without any parameter transformations; the

calibration stated in Table 6 applies to both algorithms.

C.2 Numerical algorithm: continuous time

C.2.1 Finite-di�erence computation of the long-run solution

The long-run solution of our model must satisfy the system of ODEs (60)-(63). These

can be solved by a �nite di�erence method.70 To do so, we consider a grid of maturities

70We have de�ned and computed both continuous-time and discrete-time versions of the model. The
discrete time version is described in the next section. Numerical simulations of both versions give the
same results.
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Table 6: Calibration
Parameters* Values

Parameters calibrated directly from observables

r̄: Mean of monthly risk-free rate rt 0.00102

κ: Monthly mean reversion of rt 0.0052

σ : Standard deviation of monthly innovations to rt 0.000153

Parameters estimated by minimizing the distance criterion

γ: Risk aversion 0.0108

ψ: Default probability intercept 0.000718

θ: Slope of default rate 1.71 ×10−5

r̂ + ϕ: Discount rate in �scal pressure aggregate 0.0305

κh: Monthly mean reversion of PH shocks 0.000447

σh: Volatility of monthly PH innovations 144.2

υh: Relative volatility of IT PH demand 0.300

χh: Demand correlation parameter -0.558

αh: Slope parameter of PH demand 9.60×104

ζ: Remittance rule coe�cient 1

* Parameters are expressed in terms of a monthly time unit. The unit of value is billions of euros.

(τ1, .., τI) with τ0 = 0 and constant step size ∆τ , so that τi ≡ τ(i) = i∆τ . De�ne

Ai = A (τi) , A
∗
i = A∗ (τi) , Ci = C (τi) , C

∗
i = C∗ (τi) ,

Si = S (τi) , S
∗
i = S∗ (τi) , αi = α (τi) , α

∗
i = α∗ (τi) ,

h = h (τi) , h
∗
i = h∗ (τi) .

The boundary conditions are A0 = A (0) = 0 and C0 = C (0) = 0 because an in-

stantaneous bond trades at par. We begin with a guess of Ani , A
n∗
i , with n = 0. For

instance, we can begin with Ani = An∗i = τi and Cn
i = Cn∗

i = 0. Then, considering a

backward �nite-di�erence approximation ∂An+1(τ(i))
∂τ

≈ An+1
i −An+1

i−1

∆τ
, and likewise for the

other unknown functions, we approximate the ODEs as:

An+1
i − An+1

i−1

∆τ
= An+1

i (Λn − κ) + 1 + Ξn,

Cn+1
i − Cn+1

i−1

∆τ
= An+1

i

(
λ̄n + κr̄

)
− 1

2
σ2
[
An+1
i

]2
+ ψδ + ξ̄n,

A
(n+1)∗
i − A

(n+1)∗
i−1

∆τ
= A

(n+1)∗
i (Λn − κ) + 1,
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C
(n+1)∗
i − C

(n+1)∗
i−1

∆τ
= A

(n+1)∗
i

(
λ̄n + κr̄

)
− 1

2
σ2
[
A

(n+1)∗
i

]2
,

where

Λn = −γσ2

I∑
i=1

(
αi [A

n
i ]

2 + α∗
i [A

n∗
i ]2
)
∆τ,

λ̄n = γσ2

I∑
i=1

[(
Si − hi − αiC

n
i + iαiδ̂ψ

)
Ani + (S∗

i − h∗i − α∗
iC

n∗
i )An∗i

]
∆τ,

Ξn = −γψδ2
I∑
i=1

αiA
n
i∆τ.

ξn = γψδ2
I∑
i=1

[(
Si − hi − αiC

n
i + iαiδ̂ψ

)]
∆τ.

In matrix form, this amounts to

Fn︷ ︸︸ ︷

1
∆τ

− Λn + κ 0 0 · · · 0

− 1
∆τ

1
∆τ

− Λn + κ 0 · · · 0
... − 1

∆τ
1
∆τ

− Λn + κ · · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ

− Λn + κ



An+1︷ ︸︸ ︷

An+1
1

An+1
2
...

An+1
I−1

An+1
I


=

fn︷ ︸︸ ︷

1 + Ξn

1 + Ξn

...

1 + Ξn

1 + Ξn


,

(77)



1
∆τ

− Λn + κ 0 0 · · · 0

− 1
∆τ

1
∆τ

− Λn + κ 0 · · · 0
... − 1

∆τ
1
∆τ

− Λn + κ · · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ

− Λn + κ



A(n+1)∗︷ ︸︸ ︷

A
(n+1)∗
1

A
(n+1)∗
2
...

A
(n+1)∗
I−1

A
(n+1)∗
I


=

f∗︷ ︸︸ ︷

1

1
...

1

1


,

(78)
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G︷ ︸︸ ︷

1
∆τ

0 0 · · · 0

− 1
∆τ

1
∆τ

0 · · · 0
... − 1

∆τ
1
∆τ

· · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ



Cn+1︷ ︸︸ ︷

Cn+1
1

Cn+1
2
...

Cn+1
I−1

Cn+1
I


=

gn+1︷ ︸︸ ︷

An+1
1

(
λ̄n + κr̄

)
− 1

2
σ2
[
An+1

1

]2
+ ψδ + ξ̄n

An+1
2

(
λ̄n + κr̄

)
− 1

2
σ2
[
An+1

2

]2
+ ψδ + ξ̄n

...

An+1
I−1

(
λ̄n + κr̄

)
− 1

2
σ2
[
An+1
I−1

]2
+ ψδ + ξ̄n

An+1
I

(
λ̄n + κr̄

)
− 1

2
σ2
[
An+1
I

]2
+ ψδ + ξ̄n


,

(79)



1
∆τ

0 0 · · · 0

− 1
∆τ

1
∆τ

0 · · · 0
... − 1

∆τ
1
∆τ

· · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ



C(n+1)∗︷ ︸︸ ︷

C
(n+1)∗
1

C
(n+1)∗
2
...

C
(n+1)∗
I−1

C
(n+1)∗
I


=

g(n+1)∗︷ ︸︸ ︷

A
(n+1)∗
1

(
λ̄n + κr̄

)
− 1

2
σ2
[
A

(n+1)∗
1

]2
A

(n+1)∗
2

(
λ̄n + κr̄

)
− 1

2
σ2
[
A

(n+1)∗
2

]2
...

A
(n+1)∗
I−1

(
λ̄n + κr̄

)
− 1

2
σ2
[
A

(n+1)∗
I−1

]2
A

(n+1)∗
I

(
λ̄n + κr̄

)
− 1

2
σ2
[
A

(n+1)∗
I

]2


,

(80)

where we have already applied the boundary conditions.

The idea is to solve equations (77) and (78) iteratively from the initial guess, up-

dating Λn and Ξn and at each step, and then calculate λ̄n and ξ̄n in order to solve (79)

and (80) in a single step.

C.2.2 Finite-di�erence computation: long-run, multifactor case

The long-run solution of our model must satisfy the system of ODEs (73)-(76). The

boundary conditions are A0 = A (0) = (0, 0, 0)⊤ and C0 = C (0) = 0 because an

instantaneous bond trades at par. We begin by guessing the 3x1 vectors Ani , A
n∗
i and

the scalars Cn
i , C

n∗
i at iteration step n = 0. Then, using the backward �nite-di�erence

approximation ∂An+1(τ(i))
∂τ

≈ An+1
i −An+1

i−1

∆τ
, and likewise for the other unknown functions,

we approximate the ODEs as:

An+1
i − An+1

i−1

∆τ
=
(
Λn −K⊤)An+1

i + E1 + Ξn,

Cn+1
i − Cn+1

i−1

∆τ
=
(
An+1
i

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
An+1
i

)⊤
ΣΣ⊤An+1

i + ψδ + ξ̄n,
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A
(n+1)∗
i − A

(n+1)∗
i−1

∆τ
=
(
Λn −K⊤)A(n+1)∗

i + E1,

C
(n+1)∗
i − C

(n+1)∗
i−1

∆τ
=
(
A

(n+1)∗
i

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
A

(n+1)∗
i

)⊤
ΣΣ⊤A

(n+1)∗
i ,

where

Λn = γ

I∑
i=1

(
ςiE2 (Ani )

⊤ − αiA
n
i (A

n
i )

⊤ + ς∗i E3 (An∗i )⊤ − α∗
iA

n∗
i (An∗i )⊤

)
ΣΣ⊤∆τ,

λ̄n = γΣΣ⊤
I∑
i=1

[(
Si − hi − αiC

n
i + iαiδ̂ψ

)
Ani + (S∗

i − h∗i − α∗
iC

n∗)An∗i

]
∆τ,

Ξn = γψδ2
I∑
i=1

(ςiE2 − αi (A
n
i ))∆τ.

ξn = γψδ2
I∑
i=1

[(
Si − hi − αiC

n
i + iαiδ̂ψ

)]
∆τ.

In matrix form, using I3 to indicate the 3x3 identity matrix, this amounts to

Fn︷ ︸︸ ︷

1
∆τ I3 − Λn +K⊤ 0 0 · · · 0

− 1
∆τ I3

1
∆τ I3 − Λn +K⊤ 0 · · · 0

... − 1
∆τ I3

1
∆τ I3 − Λn +K⊤ · · ·

...

0 0 · · ·
. . . 0

0 0 · · · − 1
∆τ I3

1
∆τ I3 − Λn +K⊤



An+1︷ ︸︸ ︷

An+1
1

An+1
2

...

An+1
I−1

An+1
I


=

fn︷ ︸︸ ︷

E1 +Ξn

E1 +Ξn

...

E1 +Ξn

E1 +Ξn


,

(81)

1
∆τ I3 − Λn +K⊤ 0 0 · · · 0

− 1
∆τ I3

1
∆τ I3 − Λn +K⊤ 0 · · · 0

... − 1
∆τ I3

1
∆τ I3 − Λn +K⊤ · · ·

...

0 0 · · ·
. . . 0

0 0 · · · − 1
∆τ I3

1
∆τ I3 − Λn + κ



A(n+1)∗︷ ︸︸ ︷

A
(n+1)∗
1

A
(n+1)∗
2

...

A
(n+1)∗
I−1

A
(n+1)∗
I


=

f∗︷ ︸︸ ︷

E1
E1
...

E1
E1


,

(82)
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G︷ ︸︸ ︷

1
∆τ 0 0 · · · 0

− 1
∆τ

1
∆τ 0 · · · 0

... − 1
∆τ

1
∆τ · · ·

...

0 0 · · ·
. . . 0

0 0 · · · − 1
∆τ

1
∆τ



Cn+1︷ ︸︸ ︷

Cn+1
1

Cn+1
2

...

Cn+1
I−1

Cn+1
I


=

gn+1︷ ︸︸ ︷

(
An+1

1

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
An+1

1

)⊤
ΣΣ⊤An+1

1 + ψδ + ξ̄n(
An+1

2

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
An+1

2

)⊤
ΣΣ⊤An+1

2 + ψδ + ξ̄n

...(
An+1
I−1

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
An+1
I−1

)⊤
ΣΣ⊤An+1

I−1 + ψδ + ξ̄n(
An+1
I

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
An+1
I

)⊤
ΣΣ⊤An+1

I + ψδ + ξ̄n


,

(83)



1
∆τ 0 0 · · · 0

− 1
∆τ

1
∆τ 0 · · · 0

... − 1
∆τ

1
∆τ · · ·

...

0 0 · · ·
. . . 0

0 0 · · · − 1
∆τ

1
∆τ



C(n+1)∗︷ ︸︸ ︷

C
(n+1)∗
1

C
(n+1)∗
2

...

C
(n+1)∗
I−1

C
(n+1)∗
I


=

g(n+1)∗︷ ︸︸ ︷

(
A

(n+1)∗
1

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
A

(n+1)∗
1

)⊤
ΣΣ⊤A

(n+1)∗
1(

A
(n+1)∗
2

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
A

(n+1)∗
2

)⊤
ΣΣ⊤A

(n+1)∗
2

...(
A

(n+1)∗
I−1

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
A

(n+1)∗
I−1

)⊤
ΣΣ⊤A

(n+1)∗
I−1(

A
(n+1)∗
I

)⊤ (
λ̄n +KE1r̄

)
− 1

2

(
A

(n+1)∗
I

)⊤
ΣΣ⊤A

(n+1)∗
I


,

(84)

where we have already applied the boundary conditions. In these equations, An+1 and

A(n+1)∗ are vectors of length 3I, while Cn+1 and C(n+1)∗ are vectors of length I, while

Fn and G are matrices of size 3I × 3I and I × I, respectively.

The idea is to solve equations (81) and (82) iteratively from the initial guess, up-

dating Λn and Ξn and at each step, and then calculate λ̄n and ξ̄n in order to solve (83)

and (84) in a single step.

C.2.3 Computing the dynamics

To compute the dynamics, consider a distant terminal time T at which the model has

converged to the long-run solution. We solve the PDEs (56)-(59) backwards from time

T with time steps of size∆t ≡ ∆τ , so that backwards induction step n refers to calendar

time t(n) ≡ T − n∆τ . Using the fact that An+1
i − Ani ≈ −∂An(τ(i))

∂t
∆τ , the PDEs can

be discretized as follows::

An+1 −An

∆τ
+ FnAn = fn,

A(n+1)∗ −An∗

∆τ
+ FnAn∗ = f∗,

Cn+1 −Cn

∆τ
+GCn = gn,

C(n+1)∗ −Cn∗

∆τ
+GCn∗ = gn∗.
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Matrices Fn,G, fn, f∗, gn, and gn∗ are de�ned as before, except that we calculate Λt, Ξt,

λ̄t, and ξ̄t under time-varying conditions. In particular, we evaluate them conditional

on the net bond supply St(τ) and default rate ψt at time t = t(n).71

C.3 Discrete time representation

Here we present the discrete-time counterpart of the model, along the lines of Hamilton

and Wu (2012) .

C.3.1 Single-factor case

It is straightforward to derive and compute a discrete-time framework equivalent to our
continuous-time model. In discrete time, we write the price of a bond with a maturity of
i periods, issued by jurisdiction j ∈ {P,C} (�Periphery� or �Core�), as P j

i,t = exp
(
pji,t
)
=

exp
(
−Aji,trt − Cj

i,t

)
. Let the rate on reserves follow rt+1 = ρrt+(1−ρ)r̄+σεt+1, where

εt+1 ∼ N(0, 1). If arbitrageurs maximize a mean-variance utility function over the
increase of their wealth, then if the time period is su�ciently short, their optimization
problem can be approximated as follows:72

max
{Xj

i,t}

(
Wt −

∑I
i=1

∑
j∈{P,C}X

j
i,t

)
rt

+
∑I
i=1

∑
j∈{P,C}X

j
i,t

(
−Cji−1,t+1 −Aji−1,t+1 ((1− ρ)r̄ + ρrt) + Cji,t +Aji,trt +

σ2

2

(
Aji−1,t+1

)2
− δψjt

)
− γσ2

2

[∑I
i=2

∑
j∈{P,C}X

j
i,tA

j
i−1,t+1

]2
− γψP

t

2 δ2
[∑I

i=1X
P
i,t

]2
.

where ψCt = 0 denotes the Core default probability, and ψPt = ψt is the Peripheral

default probability, given by (31). Hence, the �rst-order condition on the investment

Xj
i,t in bonds of maturity i from jurisdiction j is

rt = −
(
Cj
i−1,t+1 + Aji−1,t+1 ((1− ρ)r̄ + ρrt)

)
+
(
Cj
i,t + Aji,trt

)
+
σ2

2

(
Aji−1,t+1

)2−δψjt−Aji−1,t+1λt−ξ
j
t ,

71Inspecting the de�nitions of the matrices in (77)-(80), we see that this algorithm calculates equi-
librium objects at time t(n)−∆τ using the risk prices λt(n) and ξt(n) from time t(n). It would therefore
be incorrect to apply this algorithm with a large time step ∆τ , but in the limit as ∆τ → 0 , it gives
the correct solution of the continuous-time PDE.

72See Hamilton and Wu (2012) for details.
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where

λt = γσ2

I∑
i=2

∑
j∈{P,C}

Xj
i,tA

j
i−1,t+1,

ξjt = γψjt δ
2

I∑
i=1

Xj
i,t .

Note that since Aj0,t = Cj
0,t = 0, the �rst-order conditions for holdings of one-period

bonds are simply

rt = yC1,t = CC
1,t + AC1,trt , rt = CP

1,t + AP1,trt − δψt − ξt ,

which implies AC1,t = 1, AP1,t = 1+Ξjt , C
C
1,t = 0, and CP

1,t = δψt+ ξ̄t. The FOC for longer

bonds can be interpreted as

pji,t = −rt + Etp
j
i−1,t+1 +

1

2
V artp

j
i−1,t+1 − Aji−1,t+1λt − δψjt − ξjt ,

or equivalently

P j
i,t = exp

(
−rt − Aji−1,t+1λt − δψjt − ξjt

)
EtP

j
i−1,t+1.

Now apply the market clearing condition Xj
i,t = Sji,t − Zj

i,t, where preferred-habitat

demand is Zj
i,t = hji,t+ iα

j
i

(
yji,t − δ̂ψjt

)
, and write the risk compensation terms in a�ne

form as λt = Λtrt + λ̄t and ξPt = ΞPt rt + ξ̄Pt , with ξCt = ΞCt = ξ̄Ct = 0. Then, the

�rst-order conditions imply the following restrictions on the a�ne coe�cients:

Aji,t = 1 + Aji−1,t+1 (ρ+ Λt) + Ξjt , (85)

Cj
i,t = Cj

i−1,t+1 −
1

2

(
σAji−1,t+1

)2
+ Aji−1,t+1

(
(1− ρ) r̄ + λ̄t

)
+ δψjt + ξ̄jt , (86)

where

Λt = −γσ2

I∑
i=2

∑
j∈{P,C}

Aji−1,t+1

(
αjiA

j
i,t

)
, (87)

λ̄t = γσ2

I∑
i=2

∑
j∈{P,C}

Aji−1,t+1

(
Sji,t − hji,t − αjiC

j
i,t + iαji δ̂ψ

j
t

)
, (88)
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ΞPt = −γδ2ψPt
I∑
i=1

(
αPi A

P
i,t

)
, (89)

ξ̄Pt = γδ2ψPt

I∑
i=1

(
SPi,t − hPi,t − αPi C

P
i,t + iαPi δ̂ψ

P
t

)
. (90)

These di�erence equations can be solved by backwards induction, starting from a

distant time T at which we assume that the pricing functions are known, bearing in

mind that Aj0,t = Cj
0,t = 0 for all j and t. To ensure a correct solution of the discrete-time

model, we can apply a �xed-point calculation at each time step:

1. Guess Aji,t = Aji,t+1 and C
j
i,t = Cj

i,t+1.

2. Calculate Λt, Ξ
P
t , λ̄t, and ξ̄

P
t from (87)-(90).

3. Update Aji,t = Aji,t+1 and C
j
i,t = Cj

i,t+1 using (85)-(86).

4. Iterate to convergence.

Once the time t equilibrium has been calculated, we can step backwards to calculate

the time t− 1 equilibrium by the same method.

C.3.2 Discrete time representation: multi-factor case

For the discrete-time, multi-factor case, we write the price of a bond with maturity i,

issued by jurisdiction j ∈ {P,C}, as P j
i,t = exp

(
pji,t
)
= exp

(
−
(
Aji,t
)⊤
qt − Cj

i,t

)
. Let

the factors follow qt+1 = (I3−K)qt+KE1r̄+Σεt+1, where εt+1 ∼ N(0, I3). If arbitrageurs
maximize a mean-variance utility function over the increase of their wealth, then if the
time period is su�ciently short, their optimization problem can be approximated as
follows:

max
{Xj

i,t}

(
Wt −

∑I
i=1

∑
j∈{P,C}X

j
i,t

)
rt +

∑I
i=1

∑
j∈{P,C}X

j
i,t

(
−Cji−1,t+1 −

(
Aji−1,t+1

)⊤
(KE1r̄ + (I3 −K)qt)

)
+

∑I
i=1

∑
j∈{P,C}X

j
i,t

(
Cji,t +

(
Aji,t

)⊤
qt +

1
2

(
Aji−1,t+1

)⊤
ΣΣ⊤Aji−1,t+1 − δψjt

)
− γ

2

∑I
i,k=2

∑
j,l∈{P,C}X

j
i,tX

l
k,t

(
Aji−1,t+1

)⊤
ΣΣ⊤Alk−1,t+1 − γψP

t

2 δ2
[∑I

i=1X
P
i,t

]2
.

where ψCt = 0 denotes the Core default probability, and ψPt = ψt is the Peripheral
default probability, given by (31). Here we have used the fact that the variance of the
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portfolio value, conditional on no default, is

Vart
I∑
i=2

∑
j∈{P,C}

Xj
i,tP

j
i−1,t+1 = Et

 I∑
i=2

∑
j∈{P,C}

Xj
i,t

(
Aji−1,t+1

)⊤
Σεt+1

2

=

I∑
i,k=2

∑
j,l∈{P,C}

Xj
i,tX

l
k,t

(
Aji−1,t+1

)⊤
ΣΣ⊤Alk−1,t+1

Hence, the �rst-order condition on the investment Xj
i,t in bonds of maturity i from

jurisdiction j is

rt = E⊤
1 qt = −

(
Cj
i−1,t+1 +

(
Aji−1,t+1

)⊤
(KE1r̄ + (I3 −K)qt)

)
+
(
Cj
i,t +

(
Aji,t
)⊤
qt

)
+

1

2

(
Aji−1,t+1

)⊤
ΣΣ⊤Aji−1,t+1 − δψjt −

(
Aji−1,t+1

)⊤
λt − ξjt ,

where

λt = γΣΣ⊤
I∑
i=2

∑
j∈{P,C}

Xj
i,tA

j
i−1,t+1,

ξjt = γψjt δ
2

I∑
i=1

Xj
i,t .

Note that since Aj0,t = Cj
0,t = 0, the �rst-order conditions for holdings of one-period

bonds are simply

rt = yC1,t = CC
1,t +

(
AC1,t

)⊤
qt , rt = CP

1,t +
(
AP1,t

)⊤
qt − δψt − ξt ,

which implies AC1,t = E1, AP1,t = E1 + Ξt, C
C
1,t = 0, and CP

1,t = δψt + ξ̄t. The FOC for

longer bonds can be interpreted as

pji,t = −rt + Etp
j
i−1,t+1 +

1

2
V artp

j
i−1,t+1 −

(
Aji−1,t+1

)⊤
λt − δψjt − ξjt ,

or equivalently

P j
i,t = exp

(
−rt −

(
Aji−1,t+1

)⊤
λt − δψjt − ξjt

)
EtP

j
i−1,t+1.

Now apply the market clearing condition Xj
i,t = Sji,t − Zj

i,t, where preferred-habitat

demand is Zj
i,t = hji,t − ςji,ε

j
i,t + iαji

(
yji,t − δ̂ψjt

)
, and write the risk compensation terms

in a�ne form as λt = Λ⊤
t qt + λ̄t and ξPt =

(
ΞPt
)⊤
qt + ξ̄Pt , with ξCt = ΞCt = ξ̄Ct = 0.
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Then, the �rst-order conditions imply the following restrictions:

Aji,t = E1 +
(
Λt +

(
I3 −K⊤))Aji−1,t+1 + Ξjt , (91)

Cj
i,t = Cj

i−1,t+1−
1

2

(
Aji−1,t+1

)⊤
ΣΣ⊤Aji−1,t+1+

(
Aji−1,t+1

)⊤ (
KE1r̄ + λ̄t

)
+ δψjt + ξ̄

j
t , (92)

where

Λ⊤
t = γΣΣ⊤

I∑
i=2

[
APi−1,t+1

(
ςPi E⊤

2 − αPi
(
APi,t
)⊤)

+ ACi−1,t+1

(
ςCi E⊤

3 − αCi
(
ACi,t
)⊤)]

,

(93)

λ̄t = γΣΣ⊤
I∑
i=2

∑
j∈{P,C}

Aji−1,t+1

(
Sji,t − hji,t − αjiC

j
i,t + iαji δ̂ψ

j
t

)
, (94)

(
ΞPt
)⊤

= γδ2ψPt

I∑
i=1

(
ςPi E⊤

2 − αPi
(
APi,t
)⊤)

, (95)

ξ̄Pt = γδ2ψPt

I∑
i=1

(
SPi,t − hPi,t − αPi C

P
i,t + iαPi δ̂ψ

P
t

)
. (96)

These di�erence equations can be solved by backwards induction, starting from a

distant time T at which we assume that the pricing functions are known, bearing in

mind that Aj0,t = Cj
0,t = 0 for all j and t. To ensure a correct solution of the discrete-time

model, we can apply a �xed-point calculation at each time step:

1. Guess Aji,t = Aji,t+1 and C
j
i,t = Cj

i,t+1.

2. Calculate Λt, Ξ
P
t , λ̄t, and ξ̄

P
t from (93)-(96).

3. Update Aji,t = Aji,t+1 and C
j
i,t = Cj

i,t+1 using (91)-(92).

4. Iterate to convergence.

Once the time t equilibrium has been calculated, we can step backwards to calculate

the time t− 1 equilibrium by the same method.

C.3.3 Decomposing prices and yields

The decomposition of the discrete-time version of the model can be computed by a

method analogous to the one spelled out in App. B.2.1 for the continuous-time model.
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The overall yield can be decomposed into four a�ne terms:

τyji,t(q) =
(
Aji,t
)⊤
q + Cj

i,t

=
(
Aj,EXi,t

)⊤
q + Cj,EX

i,t +
(
Aj,DLi,t

)⊤
q + Cj,DL

i,t +
(
Aj,TPi,t

)⊤
q + Cj,TP

i,t +
(
Aj,CRi,t

)⊤
q + Cj,CR

i,t .

The individual components can each be computed recursively:

Aj,EXi,t = E1 +
(
I3 −K⊤

t

)
Aj,EXi−1,t+1, (97)

Cj,EX
i,t = Cj,EX

i−1,t+1 +
(
Aj,EXi−1,t+1

)⊤
KtE1r̄t. (98)

Aj,DLi,t =
(
I3 −K⊤

t

)
Aj,DLi−1,t+1, (99)

Cj,DL
i,t = Cj,DL

i−1,t+1 +
(
Aj,DLi−1,t+1

)⊤
KtE1r̄t + δψjt . (100)

Aj,CRi,t =
(
I3 −K⊤

t

)
Aj,CRi−1,t+1 + Ξjt , (101)

Cj,CR
i,t = Cj,CR

i−1,t+1 +
(
Aj,CRi−1,t+1

)⊤
KtE1r̄t + ξ̄jt . (102)

Aj,TPi,t =
(
I3 −K⊤

t

)
Aj,TPi−1,t+1 + ΛtA

j
i−1,t+1, (103)

Cj,TP
i,t = Cj,TP

i−1,t+1 +
(
Aj,TPi−1,t+1

)⊤
KtE1r̄t −

1

2

(
Aji−1,t+1

)⊤
ΣtΣ

⊤
t A

j
i−1,t+1 +

(
Aji−1,t+1

)⊤
λ̄t.

(104)

These equations can all be solved backwards from the terminal conditions Aj,k0,t =
−→
0 ,

and Cj,k
0,t = 0, for k ∈ {EX,DL,CR, TP}. We can see that the default loss and credit

risk components are zero for Core, and in addition AP,DLi,t = 0 for Periphery.

It is straightforward to verify that equations (97)-(104) sum up to the equations

(91)-(92) that govern Aji,t and Cj
i,t. Therefore solutions to (97)-(104) sum up to a

solution for Aji,t and C
j
i,t.

C.3.4 Model generated moments

The one-period innovation to the factors is

qt+1 − Etqt+1
iid∼ N

(
0,ΣΣ⊤) ,
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and the n-period innovation to the factors is

qt+n − Etqt+n =
n∑
s=1

(I3 −K)n−sΣεt+s.

Therefore, we can calculate the unconditional variance of qt as follows:

Var (qt) =
∞∑
s=0

(I3 −K)sΣΣ⊤(I3 −K)s.

The shock to the yield yji,t+1 is a linear transformation of the shock to qt+1:

yji,t+1 − Ety
j
i,t+1 =

1

i

(
Aji,t+1

)⊤
(qt+1 − Etqt+1) .

Therefore, considering a stationary situation in which the factor loadings A are inde-

pendent of time, the unconditional covariance of the yield yji,t with the yield yki,t is

Cov
(
yji,t, y

k
i,t

)
=

1

i2
(
Aji
)⊤ Var (qt)Aki .

C.3.5 Computing Sharpe ratios

To de�ne Sharpe ratios in our context, note that excess returns are a�ected both by

variations in bond prices and by default events. Therefore, the instantaneous Sharpe

ratios for Core and Periphery in the continuous-time model can be de�ned as S∗
t (τ) and

St(τ) below, which take both these risks into account:

S∗
t (τ)dt

1/2 ≡ Et
(
dP ∗

t (τ)

P ∗
t (τ)

− rtdt

)
/

(
Vart

(
dP ∗

t (τ)

P ∗
t (τ)

))1/2

, (105)

St(τ)dt1/2 ≡ Et
(
dPt(τ)

Pt(τ)
− δdNt − rtdt

)
/

(
Vart

(
dPt(τ)

Pt(τ)
− δdNt

))1/2

. (106)

To isolate the excess return and risk embodied in the sovereign spread, we can also

calculate the following Sharpe ratio on default risk:

S∆
t (τ)dt

1/2 ≡ Et
(
dPt(τ)

Pt(τ)
− δdNt −

dP ∗
t (τ)

P ∗
t (τ)

)
/

(
Vart

(
dPt(τ)

Pt(τ)
− δdNt −

dP ∗
t (τ)

P ∗
t (τ)

))1/2

.

(107)
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We report empirical and model counterparts to S∗
t (τ) and S∆

t (τ) in Tables 2, 4, and 5,

scaled for consistency with an annual time unit.

We compute the empirical Sharpe ratios from monthly yield series in Datastream for

1999-2022, as follows. We divide the monthly series of zero-coupon yields, in percentage

points, by 1200 to construct samples of monthly logarithmic yields ŷji,t for j = DE or

IT, and for i = 12, 24, 60, 108 or 120 months. We interpolate yields on 119-month

bonds linearly using 9-year German yields and 5-year Italian yields together with 10-

year yields, and we extrapolate yields on 11-month bonds linearly using 2-year and

1-year yields. We then construct samples of monthly excess returns:

r̂xji,t+1 = iŷji,t − (i− 1)ŷji−1,t+1 − r̂t, (108)

where r̂t is the risk-free rate, and the monthly return spread:

r̂x∆i,t+1 = iŷITi,t − (i− 1)ŷITi−1,t+1 − iŷDEi,t + (i− 1)ŷDEi−1,t+1. (109)

To calculate excess returns, we use the same spliced series of German 1-month yields

and 1-month OIS that we used for the model calibration, dividing by 1200 to express

it as a monthly logarithmic yield (also from Datastream; see Sec. 4.2).

We can then compute a monthly sample Sharpe ratio Ŝji as follows:

Ŝji =
Ê
(
r̂xji,t+1

)
+ 1

2
V̂ar

(
r̂xji,t+1

)(
V̂ar

(
r̂xji,t+1

))1/2 , (110)

for j = DE or IT or ∆, where Ê and V̂ar denote the sample mean and variance.

Since the numerator of this ratio scales in proportion to the time period, while the

denominator scales in proportion to the square root of the time period, we multiply by√
12 to produce the annualized empirical Sharpe ratios that are reported in the tables.

To compute the model counterparts of (105)-(107), the numerators are

Et
(
dP ∗

t (τ)

P ∗
t (τ)

− rtdt

)
= (µ∗

t (τ)− rt) dt = A∗
t (τ)

⊤λtdt, (111)

Et
(
dPt(τ)

Pt(τ)
− δdNt − rtdt

)
= (µt(τ)− ψtδ − rt) dt =

(
At(τ)

⊤λt + ξt
)
dt, (112)
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Et
(
dPt(τ)

Pt(τ)
− δdNt −

dP ∗
t (τ)

P ∗
t (τ)

)
=
((
At(τ)

⊤ − A∗
t (τ)

⊤)λt + ξt
)
dt = ξtdt. (113)

The variances in the denominators can be calculated as

Vart
(
dP ∗

t (τ)

P ∗
t (τ)

)
= A∗

t (τ)
⊤ΣΣ⊤A∗

t (τ)dt, (114)

Vart
(
dPt(τ)

Pt(τ)
− δdNt

)
=
(
At(τ)

⊤ΣΣ⊤At(τ) + ψtδ
2
)
dt, (115)

Vart
(
dPt(τ)

Pt(τ)
− δdNt −

dP ∗
t (τ)

P ∗
t (τ)

)
= ψtδ

2dt. (116)

Equations (113) and (116) follow from Prop. 2. We evaluate these formulas using the

objects constructed in the �nite di�erence approximation to the long-run solution of

the continuous-time model, as described in Sec. C.2.2.73 Since the model is computed

with a monthly time unit, we then scale the numerator by 12, and the denominator by√
12, to produce the annualized numerators and denominators reported in the tables.

Hence the annualized Sharpe ratio is e�ectively multiplied by
√
12.

D Purchase program design: the value of �exibility

Since our results suggest that the impact of PEPP was mainly attributable to the

way it shrank credit risk premia in peripheral euro area countries, it is interesting to

ask how the PEPP's �exible design altered its impact. Here, we compare our PEPP

scenario to a counterfactual alternative based on the design principles of the APP,

which tightly constrained the allocation of purchases over time and across jurisdictions.

Fig. 10 illustrates the two scenarios we compare, showing cumulative purchases at face

value, in billions of euro, over months 3-12 (indicating March-December, 2020). The

�gure shows German and Italian purchases as blue lines with circles, and red lines with

squares, respectively; their sum is shown in black.

The solid lines show the baseline scenario that we used in Sec. 5.2 as a stand-in for

expectations about the PEPP upon its announcement. The path of purchases up to

the end of June represents actual PEPP purchases, which accumulated almost linearly

over time, at a pace that, if continued, would have exhausted the envelope before the

73Alternatively, we can evaluate the formulas using the discrete time solution. The only di�erence
is that factor loadings of maturity i, Aji , are replaced by the maturity i− 1 loadings, Aji−1.
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Figure 10: Comparing baseline purchase scenario and in�exible alternative.
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Notes: Comparing baseline PEPP scenario (solid lines) vs. in�exible �APP-style� scenario with a
constant pace of purchases and allocations equal to capital keys (dashed lines).

Blue circles: DE; red squares: IT; black: aggregate face value. E�ect on yields is shown in Fig. 11.

end of the year. As a fraction of the monthly total, Italian purchases exceeded Italy's

capital key, while purchases of German bonds were close to capital key (purchases of

French bonds were substantially below capital key). Since our scenario aims to model

the e�ects of the initial announcement, we abstract from the actual path of purchases

after June (when a recalibration of the PEPP envelope was announced), and instead

suppose that purchases from July onwards were expected to use up the initial PEPP

envelope at a constant pace, while maintaining the initial deviations in capital key.

APP-style purchases. We compare this PEPP scenario to a counterfactual alter-

native based on the in�exible design of the longer-standing Asset Purchase Programme

(APP). That program imposed a constant pace of purchases over a pre-speci�ed period

of time, and allocated purchases according to each euro area member state's capital

key. Following these principles, we design a hypothetical �APP-style� purchase an-

nouncement whereby the ECB would have committed to the same overall envelope,

but would have distributed purchases linearly over time, allocating them in proportion

to the German (26.4%) and Italian (17.0%) capital keys.74 Fig. 10 compares the two

scenarios. Dashed lines represent the APP-style scenario, while solid lines show our

benchmark PEPP scenario (the color coding is the same as in Fig. 3). Clearly, the

74While the total PEPP envelope was 750 billion euros, we only analyze the part that was dedicated
to sovereign bonds (608 billion), abstracting from private-sector and supranational purchases.
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Figure 11: Comparing impact of PEPP scenario with �in�exible� alternative
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Left panel : model simulations of Germany. Right panel : model simulations of Italy.
Panels show the model-generated impact of the PEPP announcement (solid lines) and an �APP-
style� scenario (dashed lines) that imposes a constant pace of purchases and allocations equal to
capital keys, as illustrated in Fig. 10.
Black lines: full pass-through of bond redemption income (ζ = 1) to the Italian treasury. Green
lines: zero pass-through (ζ = 0).

PEPP scenario imposes frontloading, with an initial pace of purchases faster than the

APP design would permit. Simultaneously, the PEPP scenario allocates more pur-

chases to Italy than the APP design would, while total purchases of German debt in

the PEPP scenario are similar to those in the APP scenario (close to capital key).75

Fig. 11 compares the e�ects of the purchases under the PEPP and APP designs,

showing that the former reduces yields more than the latter, in both countries and at

all maturities. The left panel refers to Germany, while the right panel refers to Italy.

The PEPP design causes a tiny extra reduction in German yields, by 1 bp at longer

maturities, compared to the APP-style program. The reduction in yields is much more

signi�cant in the Italian case, where PEPP shifts the yield curve by as much as 14

additional basis points, exceeding 10 bp at most maturities, compared with the APP

75Hence total PEPP purchases (black solid line) end up slightly above the intended envelope (black
dashed line) since our two-country simulation abstracts from the jurisdictions where purchases were
lowest, relative to capital key.
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design. Most of the di�erence between the PEPP and APP designs is attributable to a

decline in the credit risk pre mium (decomposition not shown). The �gure also shows a

counterfactual low-remittances scenario (ζ = 0, shown in green). In the low-remittances

case, the di�erence in impact across program designs is reduced, but is still signi�cant.
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